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Abstract 

This study focuses on upgrading biomass derived syngas for the synthesis of 

liquid fuels using Fischer-Tropsch synthesis (FTS).  The process includes novel 

gasification of biomass via a tri-reforming process which involves a synergetic 

combination of CO2 reforming, steam reforming, and partial oxidation of methane.  

Typical biomass-derived syngas H2:CO is 1:1 and contains tars that deactivate FT 

catalyst.  This innovation allows for cost-effective one-step production of syngas in the 

required H2:CO of 2:1 with reduction of tars for use in the FTS.  To maximize the 

performance of the tri-reforming catalyst, an attempt to control oxygen mobility, thermal 

stability, dispersion of metal, resistance to coke formation, and strength of metal 

interaction with support is investigated by varying catalyst synthesis parameters.  These 

synthesis variables include Ce and Zr mixed oxide support ratios, amount Mg and Ni 

loading, and the preparation of the catalyst.  Reaction conditions were also varied to 

determine the influences reaction temperature, gas composition, and GHSV have on the 

catalyst performance.  Testing under controlled reaction conditions and the use of several 

catalyst characterization techniques (BET, XRD, TPR, XAFS, SEM-EDS, XPS) were 

employed to better explain the effects of the synthesis parameters.  This paper highlights 

the performance of the tri-reforming catalyst under various reaction conditions and 

explains results using catalyst characterization.  A proof of concept solar powered BTL 

plant was designed by applying the resulting data.



www.manaraa.com

! 1 

 

 

 
1. Introduction 

 1.1 Renewable Energy 

In today’s environmentally conscious world, a recent shift towards using fuels 

produced from renewable resources has been seen.  Rising fuel costs, instability in the 

Middle East, and rising greenhouse emissions are driving research towards finding 

alternative energies to petroleum.  Recent developments in solar, wind, wave, and biofuel 

technologies are helping to make a sustainable and environmentally friendly energy 

solution possible.  However each of these technologies have their disadvantages and it 

has become evident that a combination of alternative energy technologies will be needed 

to meet the world’s energy demand. 

 Liquid hydrocarbon fuel derived from fossil fuels provides the majority of energy 

for transportation purposes around the world.  The US alone currently has a total fossil 

fuel consumption of approximately 14.33 billion barrels (oil equivalent) per year [1].  

Coal provides a large portion of energy for various purposes around the world with recent 

developments in coal to liquid fuel technologies.  However, these fossil fuel resources are 

not sustainable and are limited in supply.  The Energy Information Administration 

estimates that the US has 275 billion tons of coal resources and is capable of meeting 

domestic demand for 250 years at current rates of consumption [2].  It is estimated that 

the US oil reserves total 21.317 billion barrels while the world oil reserves total 1,342 

billion barrels [3].  In 2009, the US consumed 19,150,000 bbl/day and the world 

consumed 84,213,000 bbl/day [4]"  At this current consumption rate, the US would 
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deplete their own reserves in 3 years while the entire world reserves would be depleted in 

about 44 years.  The greenhouse emissions from petroleum and coal-derived energies are 

also causing alarm with talks of global warming and pollution [5].  The problems 

mentioned above are things that are not an immediate threat and can be predicted or 

calculated to determine a specific time when these issues will cause a drastic problem.  

However, there are those problems that are unforeseen and cannot be predicted or 

calculated such as the recent Deepwater Horizon oil spill in the Gulf of Mexico or the 

earthquake that hit Fukushima Daiichi nuclear plant and caused a nuclear crisis.  

Therefore, it is recognized that there is a need to produce an alternative energy that 

reduces greenhouse emissions and provides a safer, environmentally friendly route 

towards sustainable energy.  This need can be met through the use of bio-derived fuels.  

The use of biofuels creates a closed loop system in which carbon is taken up from the 

atmosphere and incorporated into the biomass framework [6].  The carbon from the 

biomass can then be converted into hydrocarbon fuels that when burned will release the 

carbon back into the atmosphere to continue the cycle.  In doing so, no further carbon is 

added to the atmosphere leaving no carbon footprint. 

 Today, liquid biofuels are broken down into two main categories: fatty acid 

methyl ester (FAME) and non-ester biofuel.  FAME fuel is mainly derived from the oils 

of plants and algaes.  Methanol along with acid or base catalysts are added to processed 

plant and algae oils to convert the triglycerides to FAME’s and glycerol in roughly a 9:1 

ratio.  The FAME product can then be used directly as a biodiesel type fuel.  The 

disadvantages to this process are that FAME physical properties do not allow them to be 

used in cold environments and blending of the biodiesel with petroleum-derived fuel 
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must be done.  The esters also provide sites of reactivity and the stability of the fuel must 

be conserved through the use of antioxidants, biocides, and other additives [7].  Other 

disadvantages are the large amounts of glycerol by-product produced and the large 

amounts of organic chemicals (methanol) that must be used.  Research into ways to use 

the glycerol by-product to increase revenue is ongoing with hopes to use the glycerol as a 

feedstock in biological processes such as alcohol synthesis [8].  The second category of 

biofuel is non-ester renewable fuel (NERF).  These biofuels can be derived through 

catalytic processing of plant and algae oils or gas to liquid technologies.  The catalytic 

processing of oils usually involves nickel (Ni) catalyst along with hydrogen to 

decarboxylate, isomerize, and saturate the compounds found in plant and algae oils [9].  

These fuels have the advantage of better physical properties over FAME’s that can be 

tailored to fit the desired fuel cut.  Some advanced biofuels have even met specification 

testing for JP-8 and Navy distillate fuels, resembling their petroleum counterparts [10].  

These NERFs require large amounts of hydrogen usually derived by reforming of natural 

gas. 

 Recent developments in the reforming of biomass derived syngas has led to 

breakthroughs in producing hydrogen as well as syngas for industrial and environmental 

applications.  Gas-to-liquid (GTL) technologies are seeing a resurgence in interest with 

expanding developments in the Middle East, Asia, and Africa [11].  Rahmim predicts 

growth in production capacity of GTL technologies though 2020 with increasing 

demands for GTL fuels built to serve local markets [12].  The EPA RFS2 alternative fuel 

mandate states that the US needs to produce 36 billion gallons/yr by the year 2022 [13].  

The US federal government has set a target of displacing 30% of current US fuel 
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consumption, equating to 200 billion gallons/yr, of biofuels by 2030 [14].  The US 

military has stated goals to make changes to using renewable fuels with the Air Force 

planning on having 50% of its aviation fuels derived from domestically produced 

renewable fuels by 2016.  This equates to 400 million gallons of synthetic fuels needed to 

be produced for the Air Force alone.  The Air Force has also made intentions to fly solely 

on domestically produced alternative fuels from renewable resources, including biomass, 

by 2030 [15].  The Navy has stated goals to reduce its petroleum consumption 50% by 

2020 [15-17].  It is clear a combination of renewable energy technologies will be needed 

to meet this demand with Fischer Tropsch synthesis (FTS) playing a major role.  This 

requires that developments in the reforming of syngas for FT applications are necessary 

and highlights the need to develop those technologies utilizing biomass as a feedstock. 

1.2 Biomass Feedstocks 

Biomass is composed of the organic matter derived from living or recently living 

plants and animals.  The main categories of biomass include food crops, grassy and 

woody plants, residues from agriculture or forestry, oil-rich algae, and the organic 

components of municipal and industrial wastes [18].  The use of biomass for energy can 

be dated back from the earliest of human existence, being burned to produce heat in the 

form of fire.  The burning of biomass is still prevalent throughout the world supplying 

15-20% of the total energy use in the world.  In non-industrialized economies, biomass is 

mainly used for domestic heating and cooking while in industrialized countries biomass 

use as a fuel is mainly restricted to by-products from forestry, paper, and sugar industries 

[19].  Desires to produce a more efficient means of deriving energy from biomass have 

led to the developments of cellulosic ethanol processing.  This led to large scale use of 
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food crops as feedstocks, such as corn, creating controversy in a food vs. fuel debate [20].  

Prices of food began to escalate as more food crops were being used for energy 

applications.  In 2008, corn reached a 10-year high at the price of $4.83 per bushel[21].  

The US government recognized this and has called upon researchers to develop advanced 

biofuels from feedstocks that do not compete with the food industry and a shift towards 

using dedicated energy crops derived from non-food resources has begun.  This includes 

utilization of the cellulosic portion of biomass already largely being produced in forestry 

and waste industries [22].  Some of the dedicated energy, non-food crops include 

jatropha, camelina, corn stover, fast growing grasses, bagasse, castor, tung, hardwoods, 

and pinewoods.  “Black liquor” from papermaking processes is also seen as a potential 

biofuel resource.  Each of the crops mentioned are grown with the intention of harvesting 

oil or cellulosic material from the plants to be converted into biofuel.  However, 

biological conversion of low-value lignocellulosic biomass is still considered to be 

economically unfavorable with low efficiencies leading to new developments in biomass 

gasification [23]. 

Algae is recognized as a possible biomass feedstock with its ability to rapidly 

reproduce.  Algae growing systems have seen an increase in research and development 

with goals of finding the optimum strain for energy applications.  Open and closed 

systems are currently being used to grow various strains of micro and macro algae each 

with a specific niche in the biofuels market.  Other areas of algae research include the use 

of algae to purify water and remove compounds such as fertilizers, CO2, or industrial 

wastes [24, 25].  These open type systems usually involve the use of multiple indigenous 

algae strains that can be harvested as a biomass feedstock for gasification.  This 
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overcomes the problem associated with complicated or economically challenging oil 

extraction processes and avoids the use of environmentally unfriendly chemicals by 

directly converting the dried algae biomass into valuable syngas for various energy and 

chemical applications. 

As the human population increases, so has the amount of waste being produced.  

The accumulation of municipal solid waste (MSW) in landfills is causing concern with 

many waste companies offering incentives to safely remove and dispose of the 

accumulating waste.  MSW is composed of everyday garbage consisting mainly of paper 

and paperboard, food scraps, yard trimmings, rubber, leather, textiles, wood, plastics, 

metals, and glass with biomass making up around 71% of the total.  In 2009, the EPA 

estimated that 243 million tons of MSW were produced in the United States. This is an 

increase of 176% since 1960.  It is estimated that it cost approximately $44/ton to bury 

landfill waste and therefore MSW provides the potential to use a negative value feedstock 

to create a high value product in the form of biofuel by recycling the biomass [26].  MSW 

provides an excellent opportunity as a major, near-term, carbon-neutral energy resource. 

Currently, less than 15% of MSW is being used to generate energy and the majority of 

MSW accumulates in landfills [27].  Florida has more MSW biomass resources than any 

other state, ~7% of the U.S. total.  Harnessing these resources should be a key component 

of Florida’s energy strategy.  In today’s industry, MSW used to generate energy is burned 

or incinerated creating environmentally unfriendly gases and particulates such as 

greenhouse gases, heavy metals, and organic compounds with well known negative 

environmental and public health effects [28].  The net efficiency for the generation of 

electricity from combustion is low at around 20-40%.  Some facilities are co-firing 
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biomass and coal in existing combustors, but biomass is limited to 5-10% of the total 

feedstock due to concerns of plugging the coal feed system [23].  Pyrolysis of biomass to 

bio-oils also received some attention but due to difficulty in downstream processing, new 

routes to biomass energy conversion are more heavily researched.  Evidence has shown 

gasification to be the more efficient and environmentally preferable way for thermal 

conversion of biomass and related organic feedstock to energy [23, 29]. Because of the 

natural biodegradation of landfill waste beneath the ground, large amounts of methane 

gas can also be collected.  Stern et al states “Landfills are estimated to account for about 

35% of anthropogenic CH4 emissions in the United States and 5-10% of global CH4 

emissions to the atmosphere”[30].  Some landfills have taken advantage of this naturally 

occurring process and have refurbished their landfills to collect this methane as a value 

added side product.  Here, it is proposed that this methane gas be used to supplement a 

reactant feed stream to an onsite reformer to optimize the syngas for FT applications.  An 

onsite gasifier could provide crude syngas derived from the MSW to be delivered to the 

reformer.  The upgraded syngas from the reformer could then be fed to a FT reactor to 

synthesize liquid hydrocarbon fuel to be sold or used onsite to power equipment.  This 

overcomes the economic problems associated with transportation of the low energy 

density biomass (~3.7 GJ/m3) by converting it to a high density transportable fuel onsite 

[19]. 

1.3 Gasification 

Gasification creates synthesis gas (syngas) for the production of high value 

chemicals, electricity, and clean burning hydrocarbon fuels.  This crude syngas is 

composed of CO2, H2O, CO2, H2, gaseous hydrocarbons, char, ash, and condensable 
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tars/oils.  The main steps involved in gasification are drying, pyrolysis, oxidation, and 

reduction.  The first step involves reducing the moisture content of the biomass by 

drying.  The dried biomass is then fed to a pyrolysis zone where oxygen starved reactions 

occur to produces 75-90% volatile material.  The remaining nonvolatile material is 

described as char or ash.  The char is then oxidized to produce CO2, CO, and H2O while 

the ash is collected and removed from the process [31].  Ashes produced from biomass 

mainly consist of salts comprised of potassium, calcium, phosphorus, sodium, 

magnesium, iron, silicon, and other trace elements [19].  The ash has potential as a value 

added side product for the fertilizer industry.  Reduction occurs in the presence of sub-

stoichiometric O2 and is driven by the heat produced from the exothermic oxidation 

reactions or an external source [23, 32-34].  Figure 1 shows a flow chart representing the 

major steps in the gasification process.!#$%!&'()*+*,!-%+.,)'*/!)*0'10%&!)*!2+/)3).+,)'*!

+-%!1)/,%&!)*!%4"!567!859:!;5:!;<:!;=>"!

Figure 1: Flow chart representing major steps involved in gasification. 
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JK',$%-().!L%+.,)'*/!

(1) Combustion  !"#$%&&!!"#$%&#'(!!!!" ! !! ! !!! 

!"! ! !!"# !" !"# 

(2) Partial Oxidation !"#$%&&!!"#$%&#'(!!!!" ! !! ! !" 

!"! ! !!!! !" !"# 

(3) Methanation  !"#$%&&!!"#$%&#'(!!!!" ! !! ! !!! 

!"! ! !!" !" !"# 

(4) WGS   !" ! !!! ! !!! ! !! 

!"! ! !!" !" !"# 

(5) CO Methanation   !" ! !!! ! !!! ! !!! 

!"! ! !!"# !" !"# 

 

Endothermic Reactions 

(6) Steam-Carbon rxn !"#$%&&!!"#$%&#'(!!!!" ! !!! ! !! ! !! 

!"! ! !""!! !" !"# 

(7) Boudouard rxn !"#$%&&!!"#$%&#'(!!!!" ! !"! ! !!" 

!"! ! !"#!! !" !"# 

A variety of gasification processes have been developed including entrained-flow, 

fixed-bed, and fluidized-bed gasifiers.  In the case of biomass gasification, fluid-bed 

processes are most often used [19].  Fluid-bed processes provide extremely good mixing 

between the feed and oxidant promoting heat and mass transfer with a good scale-up 
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potential.  However, fluid-bed processes have the disadvantage of lower carbon 

conversions and higher tar production compared to other processes [19, 37, 38].  The 

composition of these tars can be complicated but mainly consists of organic molecules 

with larger molecular weights than benzene such as oxygenated aromatics [36].  Tars can 

create major problems in synthesis gas used for FT and Hydrogen applications [39].  

Dayton states that removal and/or conversion of tars is one of the greatest technical 

challenges to overcome for successful development of biomass-derived fuels [40].  The 

tars can condense on cool surfaces causing plugging and fouling of pipes and other 

equipment.  At higher temperatures, above 400°C, tars can form solid char and coke that 

can foul and plug the system or deactivate the catalyst being used [36].  This has led to 

the coupling of the gasification processes to reforming systems to remove the unwanted 

tars and optimize the syngas for the desired application [40, 41].  At University of South 

Florida (USF), current FTS experiments have shown that benzene not only leads to a less 

desirable FT product but deactivates the Co catalyst quickly.  It is clear from the above 

information that there are a variety of ways to process biomass to produce a crude syngas. 

This leads to a broad range of possible crude biomass syngas compositions that result 

from the different process conditions.  Typical crude biomass syngas compositions 

resulting from different process conditions are given in Table 1 [23, 42].  This introduces 

many variables to the reforming process that must be understood to make the production 

of liquid biofuels efficient and economical.  Some of those variables will be discussed 

further in the text. 
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Table 1:  Typical producer-gas composition and operating conditions for atmospheric 
bubbling fluidized-bed-gasifiers.!!Printed with permission from Elsevier [23].

 
 

1.4 Reforming 

 Reforming of methane has played a major role in the production of H2 and syngas 

for transportation, industrial, and residential markets [43].  The need for H2 and syngas 

has only increased in the developing world and three major classes of reforming 

technologies have been developed.  These reforming technologies are classified as steam 

reforming (SR), CO2 reforming (CR) or dry reforming, and partial oxidation of methane 

(POM).  Each of these technologies offers advantages and disadvantages over the others. 

Air  [105] Steam 
(pure) [42]

Steam-O2 

mixtures 
[177]

Operating conditions
  ER 0.18-0.45 0.00 0.24-0.51
  S/B (kg/kg daf) 0.08-0.66 0.53-1.10 0.48-1.11
  T (°C) 780-830 750-780 785-830
Gas composition
  H2 (vol%, dry basis) 5.0-16.3 38-56 13.8-31.7
  CO (vol%, dry basis) 9.9-22.4 17-32 42.5-52.0
  CO2 (vol%, dry basis) 9.0-19.4 13-17 14.4-36.3
  CH4 (vol%, dry basis) 2.2-6.2 7-12 6.0-7.5
  C2Hn (vol% dry basis) 0.2-3.3 2.1-2.3 2.5-3.6
  N2 (vol%, dry basis) 41.6-61.6 0 0
  Steam (vol%, dry basis) 11-34 52-60 38-61
Yields
  Tars (g/kg daf) 3.7-61.9 60-95 2.2-46
  Char (g/kg daf) na 95-110 5-20
  Gas (Nm3/kg daf) 1.25-2.45 1.3-1.6 0.86-1.14

  LHV (MJ/Nm3) 3.7-8.4 12.2-13.8 10.3-13.5
na: not available; daf:  dry ash-free basis; ER: equivalence ratio; S/B; 
steam-to-biomass ratio (H2O (kg/hr)/biomass (kg/daf/hr).
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SR is the most prominent form of reforming currently in the industry as it 

produces high levels of H2 [11, 44, 45].  However, SR is energy intensive due to the 

endothermic nature of the reactions and excess steam that must be generated to reach 

high H2O:CH4 ratios in order to prevent carbon deposits [11, 46-51].  Syngas produced 

from SR has a high H2:CO ratio, usually greater than 3, due to the side WGS reaction 

also lowering the selectivity and yield for CO.  Therefore additional processing, often 

expensive and complex, must be done to adjust H2:CO ratios for FT or methanol 

synthesis [48, 52]. 

Because of the growing concern about global warming and environmental 

impacts, many researchers have turned to CR as a way to reduce two major green house 

gases; CH4 and CO2 [53-64].  Other researchers justify CR due to its flexibility in niche 

applications such as the production of oxygenated chemicals from hydroformylation 

reactions requiring a H2:CO ratio of 1:1 [19, 65].  Debates over the mechanism involved 

in dry reforming have occurred over the years.  Some researchers believe that the 

mechanism involves a single rate-determining step (RDS).  This rate-determining step 

has been argued to be CH4 decomposition, the decomposition of CHxO to adsorbed H and 

CO, or the reaction between carbon from CH4 and oxygen from CO2 to produce CO [66-

70].  Other researchers believe there are two RDS, involving the dissociation of CH4 and 

the CHxO decomposition [57, 71, 72].  Nevertheless, a combination of the above 

reactions occurs and their order and role in the overall mechanism is more than likely 

influenced by catalyst and reaction variables such as support/promoters of the catalyst 

and temperature differences respectively [73]. The major reasons CR is impractical in 

industry is the highly endothermic nature of the reactions, the propensity of catalyst 
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deactivation by coking, and the formation of water through side reactions selective for H2 

[74-77].  Researchers believe that CH4 decomposition and CO disproportionation are 

favorable on Ni catalysts and attribute the high rate of deactivation to these reactions [78-

84]. 

The third process involves POM overcomes many of the disadvantages of the 

above two reforming technologies.  POM creates syngas in the desired 2:1 ratio of H2:CO 

with a high selectivity for H2 and CO, good conversion of CH4, and low residence times 

[47, 52, 85-94].  POM is also seen to have the advantage of being exothermic, thus 

lowering the energy demand and making the process more economical.  However, due to 

nature of these exothermic reactions, the reactions are difficult to control with hot spots 

developing and risks of explosion dangers [50, 85, 95-98].  Under these conditions, the 

risk of combusting CO and H2 also poses a challenge. 

It is evident that the above reforming processes alone cannot overcome problems 

associated with H2:CO ratios, deactivation, safety, and economics.  The determination 

upon which process to use is also highly dependent upon the desired application of the 

resulting syngas produced [11].  Some researchers have turned to CO2 sorbents and guard 

beds (quicklime, calcined dolomites, olivines, etc.) placed before the primary reforming 

bed [99-105].  These modifications to the reforming process can alleviate issues with 

catalyst deactivation and reduce the amount of tars and other catalyst poisons like S, Cl, 

P, NH3, and alkali metals in the crude syngas [101, 106, 107].  However, these 

technologies also come with their disadvantages such as the requirements for 

regeneration, decrease in activity over calcination/carbonation cycles, and low activity for 

reforming of light hydrocarbons [54, 106, 108, 109].  Other researchers have focused on 
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to the development of technologies that combine reforming processes.  This has led to 

combined CR and POM, SR and POM, CR and SR, and a mix of all three processes 

known as tri-reforming.  The combining of reforming processes offer the ability to tailor 

H2:CO ratios and selectivity of products by altering the feed gas composition.  Combined 

CR/POM and SR/POM alleviate the problems associated with high energy input by 

coupling exothermic POM reactions with endothermic CR and SR reactions.  This 

facilitates heat transfer and creates a safer work environment with more control over the 

process.  In CR/POM and SR/POM, resistance to carbon formation is increased by 

introducing O2 to the reactant feed while costs of steam generation are also reduced in the 

case of SR/POM [43, 48].  Combined CR/SR can aid in the resistance to catalyst 

deactivation due to carbon formation [52].  However, the CR/POM combined process 

falls short in the ability to produce optimum H2:CO ratios for FT and methanol 

applications while the SR/POM combined process excludes the environmentally 

beneficial conversion of CO2.  The SR/CR combined process still requires high energy 

input making it economically unfavorable.  Tri-reforming overcomes the above problems 

and offers the best of all three processes.  An in-depth discussion on tri-reforming is 

included later in the text. 

1.5 Fischer Tropsch Synthesis 

FTS is a well-researched process playing a major role in GTL technology.  The 

roots of FTS date back to 1902 when Sabatier and Senderens first discovered that CO 

could be hydrogenated to methane over Co, Fe, and Ni catalysts [110].  It wasn’t until 

1925 did the first reports of the synthesis of hydrocarbon liquids and waxes on Co and Fe 

catalyst by Franz Fischer and Hans Tropsch lead to the naming of this synthesis 
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technique [11].  During the 1930’s and 40’s Germany took advantage of FT synthesis as a 

way to produce liquid fuels from local coal reserves.  Germany was cut off from foreign 

oil during WWII and had to develop technologies to produce liquid fuels from domestic 

coal reserves.  This forced Germany to rapidly develop the FT process and spurred large 

amounts of research in this field.  Many of the catalyst developments made at that time 

are still used widely today with a vast resource of data available publicly at Fischer-

Tropsch.org [111].  The main reactions involved can be seen in eq. 1-3, 9.  In simple 

terms, FT synthesis is a polymerization process in which hydrocarbons are added 

stepwise to a growing aliphatic chain on the catalyst surface (eq 8). 

(8) !" ! !!! ! ! ! !!!!! ! !!! 

There are two major catalysts used in FT synthesis and are classified as either Co 

or Fe catalyst.  Comparisons of Co and Fe catalyst activities and selectivities can be 

found elsewhere [112, 113].  The use of metal promoters is widely practiced in both 

classes of FT catalysis.  Some reduction promoters include Pt, Ru, Pd, Re, and Cu while 

K and Zr are used as activity/selectivity promoters.  Supports usually include Al2O3, 

SiO2, or TiO2.  Co and Fe catalyst each have their advantages, but supported/promoted 

Co catalyst have higher conversion activity, hydrocarbon selectivity, carbon efficiency, 

activity maintenance, and regenerability making them generally the more preferred 

catalyst for GTL processes [11].  Volcano plots of turnover frequency in FT reactions 

clearly show that Co is the most active catalyst [114].  However, Co catalysts must 

operate at H2:CO ratios of 2 while Fe catalyst can operate in H2:CO ratios of 0.6-1.0.  

This is due to Fe having a preference for the WGS reaction (eq. 11) while this is 

negligible in Co catalyst.  Deactivation due to coking of the Co catalyst will occur at 
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lower H2:CO ratios.  Therefore, the use of Co catalyst in FTS from biomass feedstocks 

has been limited and new technological developments are needed to overcome this 

challenge.  Other deactivation mechanisms involved in FTS include poisoning by sulfur 

and nitrogen compounds, fouling by hard waxes and carbon, formation of inactive 

catalytic phases (oxides, carbides, metal support compounds), hydrothermal sintering, 

and catalyst attrition [115, 116].  Controlling the H2:CO ratio can help in reducing a lot of 

the deactivation mechanisms.  Steam accumulation in the reactor is also a concern and 

leads to catalyst deactivation, more so in Fe catalyst [117-127].  Another main concern is 

the extreme local temperatures that can occur due to the highly exothermic nature of the 

FT reactions.  Therefore, careful planning of reactor and process designs that distribute 

the heat effectively most be used in FT synthesis.  Fe catalyst produce substantially 

greater amounts of CO2, but have the advantage of costing significantly less than Co 

catalyst.  Table 2 shows some of the current commercial GTL processes and the catalyst 

type used [11].  Note that only two of these processes use Fe catalyst. 

Interest in FT synthesis has come in waves throughout history.  Much of this is 

due to the availability and costs associated with petroleum.  While recent interests in FT 

technologies have seen resurgence due to environmental concerns and the desires to 

replace fossil fuels with renewable fuels.  FT fuels do not require a specific, new 

distribution infrastructure because the product specifications resemble those of 

conventional petroleum fuel markets.  Biomass feedstocks can play a key role in making 

bio derived fuels a cost competitive option over traditional petroleum processing.  Wolan 

et al has put considerable effort into finding commercially applicable technologies that 

overcome problems associated with the use of biomass and catalyst deactivation [128]. 



www.manaraa.com

! 17 

Table 2: Commercial GTL technology under development [11].

 

The development of a Co eggshell catalyst, to avoid mass transfer problems and hotspots 

occurring in the catalyst bed, has shown promising results [129].  The work presented 

here concentrates on upgrading the syngas produced in gasification by reducing the 

concentration of tars and adjusting the H2:CO ratio to 2:1, needed in FT synthesis of 

hydrocarbon fuels, through the use of a tri-reforming catalyst. 

1.6 Tri-reforming 

The tri-reforming process has recently received attention in the research field for 

its ability to consume greenhouse gases like methane and CO2 to produce syngas with a 

higher H2:CO ratio desired for FTS.  Tri-reforming involves a synergetic combination of 
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CO2 reforming (eq 9), steam reforming (eq 10, 11, 12), and partial oxidation of methane 

(eq 13, 14, 15) in a single reactor. 

(9)  !!! ! !"! ! !!" ! !!!   !"! ! !"#!! !" !"# 

(10) !!! ! !!! ! !" ! !!!   !"! ! !"#!! !" !"# 

(11) !" ! !!! ! !!! ! !!    !"! ! !!" !" !"# 

(12) !!!! ! !"!! ! !"# ! ! ! ! !! !! !"! ! !!"# !" !"#
a 

(13) !!! ! ! !!! ! !" ! !!!   !"! ! !!"!! !" !"# 

(14) !!! ! !!! ! !!! ! !!!!   !"! ! !!!" !" !"# 

(15) !!! ! ! ! !!! ! !" ! !!!!  !"! ! !!"# !" !"# 

a For n-C7H16 [11] 

Using the tri-reform process eliminates the serious problem of carbon formation and high 

energy consumption commonly seen in CO2 reforming by incorporating H2O and O2 (see 

equations 16-21).  Heat is generated in-situ that can be used to increase energy efficiency 

and achieve a thermo neutral balance of reactions [78, 130, 131].  H2 and CO selectivity 

can also be adjusted by controlling the amount of steam and CO2 added to the reaction 

[45, 131-136].  Song and Pan compared tri-reforming to CR and SR and found that tri-

reforming consumes less energy while producing less CO2 per unit of desired syngas 

(H2:CO=2).  The review shows that tri-reforming uses 45.8% less energy and produces 

92.8% less CO2 compared to CR.  When compared to SR, tri-reforming uses 19.7% less 

energy and produces 67.5% less CO2 [131].  This provides an important role in both 

industrial and environmental applications allowing production of high value chemicals 



www.manaraa.com

! 19 

via oxo-synthesis, electricity via solid oxide fuel cells or molten carbonate fuel cells, and 

clean burning hydrocarbon fuels via FT synthesis [137-141]. 

Coke Formation 

(16) !!! ! ! ! !!!  !"! ! !"!! !" !"# 

(17) !!" ! ! ! !!!  !"! ! !!"#!! !" !"# 

(18) !!! ! !" !! !!!  !"! ! !"" !" !"# 

Coke Removal 

(19) !!!"#! ! !!! ! !!" !"! ! !"#!! !" !"# 

(20) !!!"#! ! !!! ! !" ! !! !"! ! !"!!! !" !"# 

(21) !!!"#! ! !! ! !!!  !"! ! !!"!!! !" !"# 

Tri-reforming catalyst must be thermally stable, have a high surface area, provide 

resistance to coke formation, and be economically advantageous in order to be feasible as 

a renewable energy alternative.  Metals that have shown to have a good activity and 

selective for reforming reactions include Ni, Pt, Rh, and Ru [55].  Ni based catalyst show 

good potential for reforming methane providing a more economically friendly option 

over noble metals and thus most research has focused on developing novel Ni catalyst 

formulations.  However, Ni has the disadvantage of being susceptible to coke formation 

[55, 78].  This is attributed to methane decomposition and Boudard reactions being 

favorable over Ni catalyst (eq. 16, 17) [79-84].  Catalyst deactivation is even more of a 

hurdle to overcome in biomass gasification because of the high level of impurities 

associated with biomass-derived syngas.  Some approaches to reduce these impurities 

include physical processes like filters and wet scrubbers or thermal type processes 
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associated with catalytic cracking [29].  Other researchers have become interested in 

developing “self cleaning” type catalyst that are more resistant to deactivation.  This 

eliminates the accumulation of waste associated with physical removal methods and 

maintains energy content by converting problem tars into H2 and CO. 

 Deactivation in reforming catalyst by coke formation; sintering; attrition; and 

poisoning by phosphorus, sulfur, and halides are all possible mechanisms associated with 

reforming catalyst.  Deactivation is directly related to catalyst structure and composition 

and therefore recent research has been aimed at producing a suitable catalyst in the 

upgrading of biomass-derived syngas [17].  CeO2 is reported to have a high oxygen 

storage capacity (OSC) and is often used as a promoter with Ni for methane conversion 

to syngas [142-144].  Addition of ZrO2 to CeO2 catalysts has shown to improve OSC, 

redox property, thermal stability, metal dispersion, selectivity, and catalytic activity [50, 

145-149].  It’s proposed these improved characteristics are attributed to the formation of 

a (Ce, Zr)O2 solid solution [48, 97, 146, 147, 150-152].  Dong et al studied POM and CR 

on Ni/(Ce, Zr)O2 and attributed better catalytic performance to the catalyst having two 

active centers, one for activating the CH4 molecules and the other activating steam and 

O2 molecules [48].  By incorporating CeOx into the catalyst support, the reaction of steam 

with adsorbed species on the Ni surface, near the boundary between the metal and 

support, is accelerated.  This improves coking resistance and stability of the catalyst, 

which is attributed to the increase OSC from modifying the local oxygen environment 

around Ce and Zr generating active oxygen [153].  Nagia et al explains this stating “the 

introduction of undersized Zr ions into the Ce framework (Zr4+=0.84Å, Ce4+=0.97Å) 

could compensate for the volume increase” associated with the valence change of Ce4+ to 
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Ce3+ (Ce3+=1.14Å) easing the transition [154, 155].  Research has shown that the Ce/Zr 

mixed oxides consistently perform with higher activity compared to the pure oxide 

supports and Al2O3 due to the mixed oxide’s ability to promote POM and steam 

reforming reactions [46, 88, 89, 92, 144, 146, 156, 157].  Because of this, Ce1-xZrxO2 

support materials have received much attention with 0.6<x<0.8 being preferred for 

catalytic applications [78]. 

Basic oxides, such as magnesia and zirconia, have shown to catalyze the 

gasification of coke with steam and to help prevent deposition of carbon in dry reforming 

[44, 53, 158, 159].  This may be attributed to the low concentration of Lewis sites and 

increase of oxygen vacancies by introducing ZrO2 and MgO into the catalyst 

composition.  Coupling these basic oxides with Ni catalyst helps in promoting CO2 and 

H2O adsorption leading to enhanced CO2 conversion and H2 production [131, 137].  It is 

postulated that MgO promotes the adsorption of steam by facilitating OH spillover to the 

Ni metal site [11].  Song and Pan also attribute the enhanced CO2 conversion to a higher 

interface between Ni, MgO, and ZrO2 resulting from NiO/MgO and ZrO2/MgO solid 

solutions [131].  Evidence shows that using these basic promoters leads to ensemble 

control and prevention of sintering and carbon formation [56].  This work highlights the 

effects of ZrO2, CeO2, and MgO in Ni based tri-reforming catalysts and examines 

reaction selectivity due to variations in structure/composition and feed gas composition 

respectively.  
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2. Experimental Section 

2.1 Catalyst Synthesis 

Ce/Zr oxide supports were prepared using the co-precipitation method reported by 

Rossignol et al using Ce(NO3)3x6H2O and ZrO(NO3)2xH2O as precursors [160].  Co-

precipitation of precursors provides an industrial scale up opportunity because of its 

simplicity.  Pure Ceria and Zirconia oxides as well as the mixed oxides with Ce:Zr molar 

ratios of 0.16:0.84, 0.6:0.4, and 0.8:0.2 were all prepared using the same method.  

Appropriate quantities of the precursor salts were dissolved in deionized (DI) water and 

precipitated by the addition of NH4OH to form hydrous zirconia, ceria, or Ce/Zr solution.  

This precipitate was vacuum filtered and re-dispersed into a 0.25M NH4OH solution.  

The dilute, basic solution was again vacuum filtered and dried in an oven at 60°C for 1 hr 

followed by 120°C overnight.  The dried powder was then calcined at 800°C for 4hr. 

 The loading of Ni and Mg to the oxide support was carried out using two different 

loading procedures: wet impregnation (WI) and deposition precipitation (DP).  All metals 

were loaded on a mass basis to achieve desired wt. % of metal on the catalyst.  For the 

WI method, appropriate amounts of Mg(NO3)2xH2O and Ni(NO3)2x6H2O were dissolved 

in deionized water to form a homogeneous solution.  This solution was then added drop-

wise to the support until incipient wetness and dried at 120°C for 2hr.  This step was 

repeated until all of the metal nitrate solution had been added to the support.  Following 

the final drying step, the catalyst was calcined at 500°C for 4hr.  DP was carried out 

using a modified method adapted from Li et al [161].  Appropriate amounts of 
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Mg(NO3)2xH2O and Ni(NO3)2x6H2O where added to a volumetric flask and dissolved in 

25ml DI water.  The powder support was added to the metal salt solution and mixed with 

a stir plate to form a slurry.  In a separate beaker, CO(NH2)2 (urea) was added in excess to 

10ml of DI water to achieve a 1:4 ratio of total metal nitrates:urea. The urea solution was 

added drop-wise to the metal salt solution while stirring.  The top of the volumetric flask 

was sealed to prevent evaporation of the solution and heated to 115°C while stirring at 

600rpm on a heated stir plate.  Urea hydrolyzes slowly at temperature allowing hydroxyl 

groups to react as rapidly as they form maintaining a constant pH and allowing 

precipitation on surface and interior of pores [11].  The solution was aged for 24hr and 

then cooled to room temperature before vacuum filtering with a Buchner funnel.  Cold DI 

water was used to wash any remaining precursors and impurities from the filtered 

catalyst.  The catalyst was then dried at 120°C for 4hr followed by calcination at 500°C 

for 4hr.  Figure 2 shows a picture of a few of the catalysts made in this study. 

 
Figure 2: A picture of catalyst loaded with Ni and Mg (left side, grey samples) and the 
mixed oxide supports (far right, yellow samples). 
 
 2.2 Catalyst Characterization 

BET, XRD, TPR, XAFS, SEM-EDS, and XPS were used to characterize 

catalysts.  Each of these methods provides insight into the catalyst physical and chemical 

structure.  The combination of these techniques provides valuable data that proves more 
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useful than any single characterization technique alone. These characterization techniques 

helped aid in the rational of the catalyst design and how to improve catalyst properties.  A 

brief explanation of why and how these techniques were used is presented here. 

2.2.1 BET Physisorption 

Surface area was measured using the multipoint BET method.  The BET theory 

explains the physical adsorption of gas molecules on a solid surface.  Stephen Brunauer, 

Paul Hugh Emmet, and Edward Teller first published an explanation of BET theory in 

1938 [162].  The naming of this technique was derived from each of their last names in 

combination.  In BET analysis, a sample is enclosed in a glass cell and evacuated under 

an inert environment.  The sample is then cooled with liquid N2 and the partial pressure of 

N2 in the cell is increased while the amount of adsorbed N2 is recorded.  The process is 

then reversed and the partial pressure of N2 is decreased while measuring the desorption 

of N2.  The data collected can then be used to determine the number of N2 molecules 

adsorbed for monolayer coverage and based upon the cross-sectional area of N2 

(0.162nm2) the surface area can be calculated.  The BET equation is found in eq. 22 and 

gives “the relationship between volume of N2 adsorbed at given partial pressures and 

volume adsorbed at monolayer coverage” [11]. 

(22) 
!
!!

!!!! !
!!!

! !
!!!

!
!!! !

!!
!!!

 

Where P is the partial pressure of N2, Po is the saturation pressure at experimental 

temperature, V is the volume adsorbed at P, Vm is the volume adsorbed at monolayer 

coverage, and c is the BET constant. 

(23)  !! ! !
!!! 



www.manaraa.com

! 25 

(24) ! ! !! !
!   

(25) !!"#!!"!#$ ! !!!"
!!"#$%

 

From this data a BET plot with a slope of A and the y-intercept of I can be used to 

calculate the volume of monolayer adsorbed gas (Vm) and the BET constant (c) using eq 

23, 24.  The surface area can then be calculated from eq 25 where N is Avogadro’s 

number, s is the cross section of the adsorbing species, and Vmolar is the molar volume of 

adsorbate gas.  A typical gas adsorption isotherm and the regions of the isotherm are 

given in Figure 3. 

Figure 3: Nitrogen isotherm curve and labeled sections. 

Physisorption experiments were performed using a Quantachrome Autosorb-iQ.  

Approximately 51mg of catalyst was loaded into a 6mm in diameter glass sample cell 
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with a spherical reservoir to hold the catalyst.  No rod was used to reduce the void 

volume in the cell.  The vacuum control was set to fine powder where the evacuation 

cross-over pressure was set to 3 torr. The sample was degassed from room temperature to 

a target temperature of 200°C at a rate of 25°C/min and allowed to soak for 2 hr.  A 

backfill pressure of 800 torr was used.  The sample was then cooled to room temperature 

and the degassed sample mass was then recorded.  Following this measurement the 

sample was loaded into the analysis station and cooled to -196°C (77K) using a liquid N2 

bath.  N2 partial pressure and adsorption was then recorded by the sorption analyzer in 

P/Po increments of 0.02.  The BET surface area was calculated using data in the P/Po 

range of 0.05-0.3.  This is the region where the most reliable data is collected and a linear 

relationship for the BET plot is maintained. 

 2.2.2 X-Ray Diffraction 

X-ray diffraction (XRD) is a bulk characterization technique commonly employed 

to measure the crystal structure of catalytic phases.  Crystal structures are composed of 

planes made from repetitive arrangements of atoms.  The miller indices further breaks 

down the orientation of these planes into vector notation and is the commonly used to 

describe crystal planes.  Each of these planes is capable of diffracting X-rays at different 

angles.  These diffracting angles are known as Bragg angles (2!).  Each compound has its 

own unique diffraction pattern due to the various planes that make up that particular 

crystalline structure.  XRD works upon this principal and measures the angles of the 

diffracted X-rays from the radiated sample to produce a spectrum of characteristic peaks 

[11].  These peaks are interpreted by the analyst based upon their location (2!), intensity, 

and width.  This allows for qualitative and quantitative phase analysis of samples by 
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identifying the species, Miller’s indices, and the relative intensity for each peak [163].  

XRD analysis also allows for examination of crystallite size according to the Scherrer 

equation eq 26 where B is the width at half peak ht, d is the crystallite size, " is the x-ray 

wavelength, ! is the Bragg angle/2, and # is a constant. 

(26) ! ! !"
!"#$% 

However, XRD is limited to detecting crystallites that are larger than 3-5nm and make up 

more than 1% of the sample composition.  Crystallites smaller than these are unable to 

diffract X-rays and are called X-ray amorphous.  Nevertheless, the Scherrer equation 

allows a rough estimation of crystallite size to be made when diffraction peaks are 

detected. 

 XRD analysis was carried out with a Philips X’pert XRD using a powder x-ray 

diffraction technique.  Before each sample was analyzed the instrument was calibrated to 

compensate for any differences in the positioning of the sample holder by adjusting !, $, 

and Z angles of the x-ray beam.  A 15mm mask was used to narrow the diffracted beam 

to the detector in the y-axis.  A Cu plate was used to attenuate the x-ray beam during 

positioning as not to saturate the detector.  After correct alignment of the instrument, the 

Cu plate was removed and a quick scan of the sample was made to optimize scanning 

parameters.  The machine was operated in a Bragg angle (2!) range of 15-80°.  The step 

size was 0.06° and set at a dwell time of 1s for each step.  These adjustments were made 

to maximize the intensity while keeping the signal to noise ratio high.  X’pert Highscore 

software was used to assist in data analysis. 
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2.2.3 Temperature-Programmed Reduction 

Temperature-programmed reduction (TPR) is a widely used tool to characterize 

the reducibility of the oxide form of a catalyst.  This is done by flowing a reducing gas 

mixture, usually diluted hydrogen in an inert gas, over a catalyst while the temperature is 

ramped over a particular range.  H2 adsorption occurs on metal or metal oxide surfaces, 

due to the reduction of the species, and the consumption of H2 is measured as a function 

of temperature.  H2 consumption is usually measured by a thermal conductivity detector 

(TCD).  In doing so, a TPR profile can be made and conclusions reached about the 

reduction kinetics of the species.  The areas under the curve are proportional to the extent 

of reduction.  Species that are reduced at lower temperatures are indicative of metal or 

metal oxides with weaker interactions between the catalyst support and/or other metals 

loaded onto the surface.  Those species that are reduced at higher temperatures are a 

result of more stable or strongly interacting species making up the catalyst.  Thus, from 

TPR measurement, one can determine the optimum reduction temperature and how 

species in the catalyst are influencing each other. 

TPR was carried out using 50 mg of catalyst loaded into a glass sample cell.  Each 

sample was pretreated with helium while ramping the temperature 10°C/min from 25°C 

to 110°C and holding at temperature for 30minute.  The sample was then cooled to 50°C.  

Following pretreatment the carrier gas was switched to 5% H2/N2 and the temperature 

ramped to 1100°C at 10°C/min.  Gas analysis was performed using a thermal 

conductivity detector (TCD) measuring the uptake of H2 under the temperature-

programmed conditions. 
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2.2.4 EXAFS 

X-ray absorption fine structure (EXAFS) spectroscopy is a characterization 

method to determine detailed local structures of solids.  It works upon the principal that 

photoelectrons are created upon X-ray absorption by the sample.  These photoelectrons 

are scattered by nearby atoms causing fine structure that can be identified in X-ray 

absorption spectrum as interference fringes.  The frequencies of these fine structure 

interference fringes are related to interatomic distances between absorbing neighboring 

atoms.  The amplitude of the fine structure is related to the number, type, and order of 

neighboring atoms [11].  Therefore, information on structure and the coordination of 

atoms on the surface of the catalyst can be deduced.  However, this characterization 

technique is very complex and expensive and a synchrotron facility is required.  Very few 

facilities in US are capable of performing EXAFS characterizations.  The data collected 

must be carefully modeled and require appropriate software packages (ATHENA, 

ARTEMIS, HEPHAESTUS).  This can be a time consuming process and great effort 

must be used to decipher the sometimes ambiguous results. 

X-ray absorption spectroscopy (XAS) was performed at DuPont-Northwestern-

Dow (DND) Collaborative Access Team (CAT) beamline 5-BM-D (BM = bending 

magnet, http://www.dnd.aps.anl.gov/) at the Advanced Photon Source, Argonne National 

Laboratory.  Approximately 50mg of catalyst were ground with a mortar and pestle and 

pressed onto a 13 mm diameter pellet using a Carver press operated at 12,500psi for 20s.  

Adjustment of pellet thickness was made to obtain a linear absorption coefficient close to 

1.  For these experiments the storage ring energy was 7.0 GeV and the circulating current 

was 100.6 mA.  A Si(111) monochromator was used to filter for the desired X-ray 
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wavelengths.  Spectra were collected in transmission mode at the Ni K absorption edge 

(8333 eV) under ambient conditions.  Energies were scanned from 150 eV to 30 eV 

before the edge in 10 eV steps (background region) and then to 975 eV (representing k = 

16 Å-1) after the edge in 2 eV steps (pre-edge/edge region).  The absorption was 

measured using ionization chambers before and after the sample.  Following the second 

ionization chamber, the Ni foil and a third ionization chambers were positioned so this 

reference could be examined simultaneously.  Multiple scans (typically 3 per sample) 

were taken to improve the signal-to-noise ratio.  Merging of individual scans and data 

reduction were performed with the Athena software package [164, 165].  The background 

region (-150 to -30 eV before the edge) was extrapolated and subtracted from the data.  

Edge energies were selected as energy yielding the maximum absorption derivative.  

Spectra were normalized with a polynomial spleen operation by the absorption over the 

%k range of 2 to 14 Å-1.  Finally, the spectra were Fourier transformed with a Hanning 

window from k-space into R-space over the %k range of 3 to 14 Å-1.  A previous study 

was used to help analyze the results [22]. 

2.2.5 SEM-EDS 

 Scanning electron microscopy (SEM) allows topographical analysis of solid 

surfaces.  Images can presently be produced at resolutions down to 5nm.  SEM works 

upon the principal that when a sample is bombarded with excited electrons this causes 

secondary electrons to be produced and detected.  These secondary electrons are 

produced as the electron beam passes over the sample allowing variations in the topology 

and composition to be measured by the intensity of the secondary electrons produced 

[11].  Energy dispersive X-ray spectroscopy (EDS) allows the capability to detect 
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characteristic X-rays produced by specific elements in the sample when an electron beam 

passes over the sample.  Coupling of these two technologies are commonly used to 

collect information on the topography and elemental composition of a catalyst surface. 

SEM coupled with EDS was used to characterize catalyst surface topography and 

composition.  A Hitachi S-800 SEM coupled to an Ametek EDAX was utilized to 

conduct these experiments.  An excitation energy of 10 keV, a magnification of 1010, 

and a tilt angle of 30° was used in this analysis.  Apertures were fully opened to allow 

max current.  For EDS elemental mapping, a matrix of 256x200 was used with each pixel 

representing a size of approximately 0.45 µm. Samples were first scanned to generate an 

EDS spectrum.  For elemental mapping the excitation energy was based upon the highest 

intensity peak in the EDS spectrum and doubling the excitation energy needed for this 

species.  In this case, Ce at 5 keV was used, therefore an excitation energy of 10keV was 

used for elemental mapping. 

 2.2.6 XPS 

X-ray photoelectron spectroscopy (XPS) measures bonding energies to give 

information on surface chemical states including oxidation states, surface composition, 

surface phases, and dispersion of the tested catalyst.  This technique uses X-ray photons 

to bombard the surface and measures the emitted core photoelectrons as a function of 

electron energy.  These binding energies can be used to fingerprint elements and their 

oxidation states present in the catalyst, allowing conclusions to be drawn about the 

chemical states of the species present [166-168].  “Several important catalytic properties 

can be studied by this technique, including oxidation state of the active species, 

interaction of a metal with an oxide, support, changes in oxidation state upon activation 
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of the catalyst, and the nature of surface impurities such as chemisorbed poisons [catalyst 

book]. 

XPS was performed on the reduced and oxide forms of catalyst with the Ce:Zr 

mixed oxide ratio of 0.6:0.4 and a metal loading of 8% Ni and Mg for both the WI and 

DP metal loading methods.  XPS measurements were taken with a Perkin-Elmer PHI 560 

ESCA/SAM system under vacuum using a Mg filament.  Binding energies were scanned 

in the 0-1030 eV range initially.  A high resolution scan was performed on the Ni2p3 

peak in the binding energy rang of 849-869 eV.  RBG AugerScan 3 software was used  

for data analysis of the resulting spectrum.  A curve fit summary was produced from the 

resulting high resolution scans. 

 2.3 Catalytic Testing 

Catalytic reactions were carried out in a fixed-bed quartz u-tube reactor (i.d.=4mm) at 1 

atm.  Feed gas composition was controlled using Alicat Scientific mass flow controllers 

and adjusting the flow rates accordingly.  Online analysis of the product gas was taken 

with a MKS Spectra (Cirrus) mass spectrometer (MS) connected in-line with the reactor.  

Before each experiment, the quartz reactor was loaded with 75.2 mg of catalyst into the 

bottom third of the quartz tube and supported on either side by inert quartz wool.  The 

reaction vessel was positioned inside a Thermoscientific Thermolyne tube furnace.  

Reaction temperature was controlled by adjusting the furnace temperature program to the 

desired ramp rate or fixed temperature.  Heat tape was used to heat reactant and product 

lines to prevent condensation from occurring prior to the catalyst bed and MS detector.  

H2O was delivered to the reactant gas mixture through a heated water bubbler using 

helium as a carrier gas.  A picture of the apparatus used to deliver H2O to the composite 
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gas feed is shown in Figure 4. Similarly, tar-reforming experiments were carried out 

using toluene delivered to the reactant gas mixture by a glass bubbler using helium as a 

carrier gas.  Toluene was chosen as a model compound for tars because of its aromatic 

structure with one methyl group attached and fairly low boiling point.  This was a safer 

option over benzene since toluene is considered less toxic and also provides a means to 

track decomposition mechanisms such as dealkylation by measuring the amount of 

methane in the product gas.  The Antione equation (eq. 27) was used to calculate vapor 

pressures at various temperatures to determine the amount of H2O and Toluene in the 

feed gas.  Where P is the vapor pressure; T is temperature; and A, B and C are 

component-specific constants. 

(27) ! ! !" !! !
!!!  

A picture of the reactor set up can be seen in Figure 5. All catalysts were first reduced 

with 10% H2 in He while ramping the temperature from room temperature to 800°C at 

10°C/min and holding for 2hr.  After reducing the catalyst, by-pass valves were used to 

stop flow through the reactor while the reforming gas mixture was adjusted to the desired 

composition.  The valves were then reopened after the MS gave stable responses for each 

of the reactants.  A gas hourly space velocity (GHSV) of 61000 hr-1 was employed for all 

tri-reforming reactions, unless otherwise specifically stated.  Conversion of CH4 and CO2 

were calculated using the following formula: 

(28) !!!!!"#$! ! !! !"#!!!!!!"!!"#$%&' !!"#!!!!!!"!!""#  

(29) !!!!!"#$! ! !! !"#!!!!!!"!!"#$%&' !!"#!!!!!!"!!""#  
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Figure 4: H2O bubbler wrapped in heat tape and thermally insulated for H2O delivery to 
feed gas. 
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Figure 5: Reactor used in tri-reforming experiments. 
 

2.4 TPO Coke Studies 

Immediately following each tri-reforming reaction a temperature-programmed 

oxidation (TPO) was performed to quantify any coke present on the surface of the 

catalyst.  After tri-reforming, catalyst were quickly cooled to 115°C under an inert (He) 

environment.  The temperature was then ramped at 10°C/min to 700°C and held for 1hr 

as flow rates of O2=2.5ml/min and He=50ml/min were used to oxidize the catalyst and 

convert surface coke to CO2.  Essentially all carbon was converted to CO2 with 

insignificant amounts of other carbon containing species produced.  An example of the 

typical data collected during TPO studies is seen in Fig. 6.  The product gas was analyzed 

by a MS detector and quantified by integrating the peak areas to determine the amount of 

carbon present as coke.  TPO was used to measure the amount of coking and is reported 
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in this study as the % coke.  This number is given as the % of total carbon in reactants 

that ended up as coke. 

Figure 6: Typical data collected during TPO studies. 
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3. Results and Discussion 

 3.1 Structure of the Catalyst 

 The structure of the catalyst plays a significant role in many of the physical and 

chemical characteristics of the catalyst.  Catalyst performance can be directly related to 

the structure of the catalyst.  Therefore, characterization methods must be employed to 

understand the structural differences in the catalyst.  Interpretation of the data from the 

various characterization techniques is presented here.  This discussion identifies the 

structure and composition of catalyst used in this study. 

  3.1.1 Surface Area 

To understand how support composition, metal loading, and preparation 

influenced the surface area of the catalyst, BET analysis was performed and compared on 

multiple samples.  These results are found in Table 3.  It was interesting to find that each 

of the pure oxide species had significantly lower surface areas than any of the mixed 

oxide supports.  This indicates that the mixed oxide supports are not simply a mechanical 

mixture of the two species.  Instead, a new oxide material with very different physical 

properties from either of its pure components had been synthesized, which suggests that a 

solid solution of Ce and Zr oxides was formed using the co-precipitation technique.  

Similar results are reported by Song and Pan [131]. By comparing the surface areas of 

oxide supports with different Ce:Zr ratios, the surface area is directly related to the 

percentage of Ce in the support material.  As more Ce is introduced into the structure of 

the catalyst, the surface area also increased. 
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Table 3: BET surface area for various catalyst compositions.

 
 
This effect reaches a maximum at a Ce:Zr ratio between  0.8:0.2 and 1:1 because the pure 

Ce oxide material has a dramatically lower surface area than the highest Ce content 

sample tested here (Ce:Zr=0.8:0.2).  Upon loading of the Ni and Mg metals to the surface 

of each mixed oxide support material, the surface area decreased slightly. Metal crystals 

forming within pores of the support and sometimes blocking the pathway may be an 

explanation for this.  The DP method consistently gave higher surface areas when 

compared to the WI method.  This suggests that the DP method forms smaller metal 

clusters on the surface of the support and therefore fewer pores are being blocked than 

compared to the WI method.  These results are consistent with previous studies [11]. 

3.1.2  Crystal Structure 

 XRD analysis was utilized to identify the differences in crystal structure for 

various catalysts.  Catalyst support materials were analyzed by XRD and compared to 

elucidate structural differences as the composition was altered. 

 

Catalyst BET Surface Area (m2/g)

Pure Ceria Oxide 28.27
Pure Zirconia Oxide 12.02
Ce!"#$Zr!"%& support 30.52
Ce!"$Zr!"& support 48.65
Ce!"%Zr!"' support 50.05

Ce!"$Zr!"&-8Ni8Mg (wet impreg.) 34.53
Ce!"$Zr!"&-8Ni8Mg (dep. Precip.) 43.29
Ce!"%Zr!"'-8Ni8Mg (wet impreg.) 33.21
Ce!"%Zr!"'-8Ni8Mg (dep. Precip.) 44.06
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Figure 7 shows a comparison of the pure oxide species and the mixed oxide support with 

a Ce:Zr ratio of (0.6:0.4).  Miller indices are also represented for each peak in Figure 7. 

Figure 7: XRD comparison of support materials with miller indices for each peak. 

Pure ZrO2 is known to exist in the tetragonal and monoclinic phases.  The XRD pattern 

of pure ZrO2 in this study closely resembles characteristic peaks of the monoclinic phase.  

This is typical of ZrO2 samples that have been calcined at higher temperatures [169].  The 

XRD pattern from the pure CeO2 shows characteristic peaks for a cubic fluorite structure.  

However, when these two pure oxide species were co-precipitated no peaks could be 

identified that indicated a monoclinic ZrO2 species and all peaks resembled the cubic 

fluorite structure found in pure CeO2.  This suggests that ZrO2 is incorporated into the 

CeO2 lattice and that a solid solution formed from the combination of these two oxide 

species.  Peak broadening is seen in the mixed oxide sample compared to the pure oxides 



www.manaraa.com

! 40 

and is most likely due to lattice defects from the insertion of the smaller Zr cation into the 

CeO2 lattice.  Similar results are reported in previous literature [87, 131, 144, 170].  The 

lower Ce:Zr ratio supports were not analyzed here by XRD but previous studies show 

that upon increasing the Zr content in the support the lattice size shrinks and diffracting 

peaks are shifted to higher angles [87, 144]. 

 XRD analysis was also performed to identify structural differences arising from 

different catalyst preparation techniques.  The Ce:Zr ratio was held constant at 0.6:0.4 

and the oxide support used in both metal loading methods were taken from the same 

batch.  The XRD patterns for the oxidized and reduced forms of samples prepared by WI 

and DP are compared in Figure 8.  Identification of the species is also given in Figure 8.  

The oxidized form of catalyst prepared by both techniques show peaks characteristic to 

(Ni,Mg)O solid solution (reference pattern 00-003-0988).  However, the oxidized WI 

sample shows sharper and more intense peaks for the (Ni, Mg)O species.  This may be 

attributed to smaller crystallites of the metal species or that less Mg is loaded on the 

surface of the DP prepared catalyst. The later was confirmed in SEM-EDS experiments.  

DP typically results in smaller crystallite size and better dispersion compared to the wet 

impregnation method [11].  The reduced form of both catalyst show peaks characteristic 

to reduced Ni species (reference pattern 00-001-1260) but the WI sample gave higher 

intensity peaks for the Ni species.  This may be attributed to the higher dispersion 

associated with DP.  Both the oxidized and reduced forms of the catalyst gave 

characteristic peaks for the cubic fluorite structure of the (Ce, Zr)O2 solid solution 

(reference pattern 00-002-1311) indicating the stability of the cubic phase under the 

reduction conditions employed (800°C). 
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Figure 8: XRD spectrum for oxidized and reduced catalysts samples. 

 Pre- and post-reaction samples of the Ce0.6Zr.04-8Ni8Mg WI catalyst were also 

compared using XRD analysis.  The comparisons of XRD spectra are seen in Figure 9.  

Identification of the species and Miller indices are also given in Figure 9.  No evidence of 

crystalline carbon is present in the XRD pattern of the post reaction sample.  The post-

reaction sample shows Ni in the reduced form and is expected due to the high production 

of H2 during the reforming reaction.  Peaks characteristic of reduced Ni show higher 

intensity while the characteristic peaks for (Ni,Mg)O decreased in the post-reaction 

sample, which indicates that Ni species in the (Ni, Mg)O solid solution are reducible 

under reaction conditions for those catalyst prepared by WI.  This was an excellent result 

since Yung-Kuhn attributes the deactivation of Ni reforming catalysts to the inability to 

reduce Ni in an inactive oxide phase thus loosing activity due to fewer reduced Ni active 
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sites [22].  Post-reaction samples showed the same (Ce, Zr)O2 pattern as the pre reaction 

sample indicating that the cubic fluorite phase is stable under the reaction conditions 

employed. 

Figure 9: XRD spectrum for pre- and post-reaction WI catalyst. 

  3.1.3 Reducibility 

Figure 10 shows different reduction peaks for the pure and mixed oxide supports. 

Both the pure CeO2 and ZrO2 show much higher temperatures needed to reduce these 

species compared to the mixed oxide.  The pure CeO2 support shows a max reduction 

peak around 865°C while the pure zirconia support shows no reduction occurring at 

temperatures up to 1100°C.   
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Figure 10: Reduction profiles for support materials. 

When these pure species were combined to form a mixed oxide support, a much lower 

reduction peak is seen to occur between 300-650°C with a max adsorption peak at 555°C.  

This lower reduction temperature is attributed to a (Ce, Zr)O2 solid solution forming with 

similar trends seen for other Ce:Zr ratios.  The first and second reduction peaks seen in 

the mixed oxide are due to the surface and bulk reduction, respectively, and can be 

explained by the Binet et al model for ceria reduction [171].  The explanation given 

earlier by Nagia also explains this shift.  Incorporation of Zr ions facilitates the valence 

change of Ce by enabling the volume change associated with the reduction of Ce (Figure 

11) [154].  By incorporating Zr within support framework, oxygen mobility is increased 

allowing oxygen migration between nearby cation channels.  This channeling effect is 

further explained by Ranga et al. [172]. From the TPR experiments, it is seen that 
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incorporating ZrO2 into CeO2 to form a mixed oxide improves oxygen storage capacity 

(OSC) and redox properties. 

   

Figure 11: Representation of the Ce valence change facilitation by incorporating Zr into 
the catalyst framework [151]. 

ZrO2 is also a more thermally stable compound that improves the mixed oxides catalytic 

activity at the elevated temperatures used in reforming reactions. 

TPR was also utilized to gain a better understanding of how the Ni interactions 

between Mg and the support are affected when using different metal loading techniques.  

Figure 12 and 13 compare the TPR profiles of catalysts loaded with Ni and Mg using WI 

and DP methods.  A catalyst with only Ni loaded via wet impregnation was also 

compared in Fig 12.  Interestingly, when Ni and Mg were loaded by DP the reduction 

profile closely resembled that of the catalyst with only Ni loaded onto the surface (Fig 

12). 
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Figure 12: Ce.6Zr.4 support TPR comparison. 

When Ni and Mg were loaded by WI most of the reduction occurred at higher 

temperatures.  The lower temperature reduction peaks seen are associated with isolated 

Ni and weakly interacting Ni with the support and Mg.  The higher temperature reduction 

seen in the WI catalyst is indicative of a strong interaction occurring between Ni and Mg.  

This was found as a surprise since DP is usually associated with higher dispersion of 

smaller particles and thus stronger interactions.  Initially, it was proposed that the lower 

reduction peak in the DP prepared catalyst was attributed to higher dispersion causing 

fewer interfaces between the Ni and Mg particles and thus weaker interactions. 
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Figure 13: Ce.8Zr.2 support TPR comparison. 

Upon further experimentation, it was determined that less Mg had been loaded onto the 

DP prepared catalysts compared to the WI prepared catalyst.  This is why the reduction 

peak of DP catalyst resembled the catalyst with only Ni loaded onto the surface by WI.  

The high temperature reduction shift in the WI catalyst containing Ni and Mg species is 

thus attributed to more interfaces between Ni and Mg with stronger interactions between 

them. 

 3.1.4 Neighboring Atoms 

To examine the influence of different Ni:Mg ratios loaded onto the catalyst, 

EXAFS characterization was utilized.  Catalysts with Ni:Mg ratios of 1:1 and 2:1 were 

analyzed by EXAFS and the results can be seen in Fig. 14.  Both of the catalysts were 

freshly calcined and, therefore, species were in the oxide form.  Examination of the first 
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two peaks gives data upon the neighboring atoms of Ni.  The first peak represents 

structures resulting from Ni-O bonds.  The second peak represents Ni-Ni bonds in an 

Figure 14: EXAFS spectrum of Mg loading comparison. 

oxide structure.  The first peak of both catalysts was nearly identical indicating that the 

same amount of Ni was loaded onto both surfaces and similar particle sizes.  However, 

the second peaks varied indicating a difference in the number of Ni-Ni bonds.  Catalyst 

that were loaded with a Ni:Mg ratio of 1 showed less Ni-Ni bonds while catalyst loaded 

with the Ni:Mg ratio of 2 showed more Ni-Ni bonds.  This indicates that upon increasing 

the amount of Mg to give a Ni:Mg ratio closer to 1, more Ni/Mg interactions occur. 
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This result was expected since an increase in Mg content increases the likelihood for Ni 

species to be in close proximity to Mg and thus increasing the potential to interact with 

Mg. 

 3.1.5  Surface Morphology and Composition (SEM-EDS) 

 A scanning electron microscope allowed the surface topography of the catalysts to 

be analyzed.  By coupling SEM and EDS the confirmation of the metal species, their 

relative dispersion, and their approximate wt% on the surface of the catalysts could be 

made.  Catalysts prepared by WI and DP with the same support makeup (Ce0.4Zr0.6O2) 

were compared using SEM-EDS and the results are found in Figure 15 –18.  Figure 15 

and 16 show the image of the catalysts surface and the elemental mapping at this 

particular location on the catalyst.  From these two figures, it is seen that both Ni and Mg 

appear well dispersed over the catalyst surface for both metal loading methods (WI and 

DP).  Upon examining the elemental map for Zr in the DP sample, it appears that there 

might be some segregated Zr particles.  This was confirmed to be topographical effects 

versus an elemental effect because this segregation was not seen in the DP catalyst and 

the same batch of support was used in both loading methods.  XRD analysis further 

proved that the ZrO2 was well dispersed in a solid solution with CeO2.  The EDS results 

for both catalysts were compared and are seen in Figure 17 and Figure 18. 
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Figure 15: SEM-EDS metal mapping of WI sample. 
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Figure 16: SEM-EDS metal mapping of DP sample. 
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Figure 17: EDS spectrum and approximate elemental wt % for WI sample. 
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Figure 18: EDS spectrum and approximate elemental wt % DP sample. 

The elemental wt% calculated by the EDS are not an accurate method for determining 

bulk composition because this is a surface technique that only examines a very small area 

of the catalyst and is influenced heavily by topographical effects.  However, from these 

spectra some approximate ratios can be inferred.  Therefore, upon comparing the 

different metal loading methods it was reasoned that the DP catalyst had less Mg loaded 

onto the surface than the WI catalyst.  Further investigations into why Ni readily 

precipitated onto the surface, in the presence of excess urea, while Mg did not will have 

to be made. 
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  3.1.6 Binding Energies and Surface Phases 

 XPS was utilized to measure the binding energies of species present in the 

catalyst.  An initial broad range scan was performed to identify the major species present 

and the binding energies associated with these species.  Catalysts prepared by WI and DP 

with the same support makeup (Ce0.4Zr0.6O2) were compared using XPS. The results of 

which can be found in Figure 19. 

Figure 19: XPS spectrum of reduced WI catalyst with 8 wt. % Ni and Mg loadings. 

The binding energies of all species expected to be present in the catalyst were found and 

the compositions of the mixed oxide support and metal loading % were confirmed.  Upon 

further examination, it was determined to run a high resolution scan of the Ni2p3 peak 

occurring at a binding energy of 856 to identify the interactions between the Ni, mixed 



www.manaraa.com

! 54 

oxide support, and MgO of the catalyst loaded with 8 wt % Ni and Mg.  A curve fit 

summary was produced from this scan and the results of which can be found in Figure 

20. 

Figure 20: High resolution XPS spectrum of Ni2p3 peak in reduced WI catalyst. 

From figure 20 it can be seen that the majority of Ni is found to be interacting with the 

mixed oxide support or the MgO present in the catalyst.  Both of these binding energies 

occur at 856 and therefore, cannot be resolved.  The second largest peak occurs at a 

binding energy of 862 and is attributed to Ni in the active reduced state.  It is important to 

note that the catalyst tested here was reduced one month prior to XPS testing and it is 

expected that a larger portion of reduced Ni species would be found in freshly reduced 

catalyst.  Only a small amount of isolated and bulk NiO species was found and suggests 

that the majority of the Ni remains in the desired active states. 
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3.2 Examination of the Reaction Conditions on Catalyst Performance 

Reactions were studied under controlled temperature programs with the optimum 

temperature range found between 750-850°C.  At the lower end of this range, higher 

H2:CO ratios were produced due to the steam reforming and WGS reactions (eq.10, 11) 

being more favorable at these temperatures.  However, lower CO2 conversions were seen 

at the lower temperatures.  Because CO2 reforming is favorable at high temperatures, it 

was determined that CO2 conversion could be increased by raising the temperature to the 

higher end of this range.  This was confirmed by experiments.  At 800°C, CO2 

conversions remained high and desired H2:CO ratios could be achieved without catalyst 

deactivation.  At this temperature, coke gasification reactions can occur while 

maintaining high levels of steam reforming and POM to produce desired H2:CO ratios.  

At higher temperatures, CO2 conversion increases but H2:CO ratios dropped not only due 

to the increase in CO production, but also to less H2 production.  This is because H2 

production decreases as CO2 reforming dominates the reaction making steam reforming 

and POM reactions less favorable at higher temperatures.  Similar findings have been 

seen in previous studies [43, 173]. 

Gas composition greatly affects the reaction products. In tri-reforming, many 

reactions are occurring at one time and finding the correct ratios of reactants is not trivial.  

During tri-reforming reactions, it was found that conversion of O2 was the highest of all 

oxidants, completely being consumed.  O2 seems to have a high affinity for active sites 

on the catalyst and tend to react quickly.  Remaining active sites or those where O2 had 

disassociated already are available for the other reactants.  This finding is similar to the 

results of Amin et al thermodynamic equilibrium analysis [43].  H2O and CO2 compete 
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for the same active sites so experiments were performed to understand how altering these 

two reactant concentrations influenced product ratios.  Table 4 helps to explain these 

effects and shows that increasing the H2O ratio in the feed will increase the H2:CO ratio. 

Table 4: Gas composition comparison table. 

 
 
However, there is a point were higher H2O ratios led to a decrease in CO2 conversion.  

One of the goals in tri-reforming is to maintain high CO2 conversions while still 

producing desired H2:CO ratios.  High CO2 conversions make the process more 

environmentally friendly and improve efficiency in FTS for liquid hydrocarbons.  The 

results in Table 4 suggests that the adsorption of H2O blocks the CO2 adsorption sites 

leading to higher H2:CO ratios and inhibition of CO2 reforming.  Surprisingly, it was 

found that lower than expected H2O concentrations in the feed gas could produce high 

concentrations of H2 without sacrificing CO2 conversion greatly.  From Table 4, it is seen 

that at a CH4:CO2:H2O:O2 ratio of 1:0.7:0.23:0.2 the reaction produced desired H2:CO 

ratios above 2.  This suggests that optimum syngas compositions for FT applications 

could be achieved while maintaining high CO2 conversions at lower H2O ratios.  At these 

conditions, the catalyst still showed a high resistance to coke formation on the catalyst 

Gas Composition 
(CH4:CO2:H2O:O2) Rxn Time H2:CO

CH4 Conv. 
(%)

CO2 Conv 
(%)

Coke (%)

30 min 1.09 74.7 71.1 -
4 hr 0.91 60.9 59.8 0.35

30 min 1.76 99.13 87.4 -
4 hr 1.73 99.06 87.99 4.1E-02

30 min 2.06 98.9 86.94 -
4 hr 2.03 98.85 87.83 1.1E-02

30 min 2.21 98.84 76.25 -
4 hr 2.12 97.33 77.6 8.9E-03

30 min 2.287 99.45 69 -
4 hr 2.13 99.38 70.24 6.2E-03

30 min 2.33 99.58 66.27 -
4 hr 2.19 99.59 65.55 6.3E-03

(1:1:0:0.1)

(1:0.7:0.085:0.2)

(1:0.7:0.23:0.2)

(1:0.7:0.3:0.2)

(1:0.7:0.5:0.2)

(1:0.7:0:0.2)
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surface.  This is an added benefit for FTS since H2O is reported to deactivate catalysts 

[117-127].  Xu et al also reports higher than expected H2:CO and attributes this to the 

WGS reaction contributing at a higher than expected level to the H2 production [174].  At 

the reaction temperature of 800°C and the composition ratio mentioned above, tri-

reforming over Ce0.6Zr0.4-8Ni8Mg produced an upgraded syngas with desired H2:CO 

ratios for FT applications that achieved CO2 conversions above 86% and maintained 

resistance to coke formation at lower steam ratios.  Negligible levels of coke were 

detected in TPO experiments and catalyst activity remained high at the above reaction 

conditions.  The ability to maintain high levels of CO2 conversion without deactivation 

becomes a highly attractive option since CO2 in FT feedstock syngas increases the H2 

demand and higher H2:CO ratios than 2 will be needed to produce low concentrations of 

olefins and oxygenates in the FT synthesized product. 

Tar reforming experiments were also conducted at reaction conditions similar to 

previous runs but with the addition of toluene to the system.  The reaction temperature 

was held constant at 800°C while toluene was introduced to the reactant feed gas mix.  

The ratios of the other reactants were held constant at CH4:CO2:H2O:O2 ratios of 

1:0.7:0.4:0.2.  A higher H2O:CH4 ratio was chosen to make up for the hydrogen 

deficiency of toluene.  Therefore, H2:CO product ratios would remain above 2 at the 

desired ratio for FT applications.  Table 5 shows the results from these experiments.  

Because the mass ionization spectrum for toluene gives the largest response at mass 91, 

this was the chosen mass to analyze for the conversion of toluene. 
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Table 5: Tar reforming chart.!

!
 

The results indicate that as more toluene is introduced to the system the 

conversion or decomposition of the larger molecule remained constant a 99.9%.  Thus, 

the conclusion was reached that all toluene compounds are at least partially decomposed 

at the various levels of toluene addition tested here.  To examine whether complete 

decomposition of toluene was occurring the mass of 15, indicative of hydrocarbon 

species, was recorded by the MS.  At higher toluene % in the feed gas, the conversion of 

the hydrocarbon species (mass 15) decreased.  At lower % of toluene (toluene additions 

between 2.2-6.7%) in the feed gas, detection of hydrocarbon species remained fairly low.  

However, there seemed to be a threshold where the hydrocarbon conversion was 

influenced to a greater extent by larger toluene additions.  This threshold was found to 

occur between 6.7-8.9% toluene in the feed gas.  At toluene addition of 8.9% and 11%, 

conversions of mass 15 were 93.1% and 89.3% respectively.  Feed gas with 6.7% toluene 

resulted in a 98.2% conversion of mass 15.  These findings indicate that, at 

concentrations of toluene in the reactant feed above 8.9%, the toluene is only partially 

being decomposed and could possibly lead to adverse effects in FT processing.  Possible 

species could include benzene, methane, alkenes, and other hydrocarbons species 

Toluene           
(% feed)

Toluene 
Conv. (%)

Hydrocarbon 
Conv. (%)

CO2 Conv. 
(%)

H2:CO

2.2 99.9 99.6 72.5 2.58
4.4 99.9 99.2 82.6 2.44
6.7 99.9 98.2 90.9 2.33
8.9 99.9 93.1 97.5 2.28
11 99.9 89.3 99.5 2.33

Tar Reforming Analysis (CH4:CO2:H2O:O2=1:0.7:0.4:0.2)
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typically associated with the decomposition of toluene.  Further testing and investigations 

into what species are forming must be conducted to gain a clear understanding of how 

this impacts downstream processes like FT synthesis.  MS analysis for mass 78, the 

largest peak in the mass ionization spectrum for benzene, would indicate if benzene 

compounds are still present in the product gas and provide more precise data for total tar 

reduction.  Initial investigations are still promising though, and indicate that biomass 

derived crude syngas containing less than 6.7% total tars can effectively be tri-reformed 

resulting in a desired syngas for FT applications. 

In an effort to determine how the gas hourly space velocity (GHSV) influenced 

the composition of the product and what reactions might be taken place, the amount of 

catalyst was increased.  The increase in catalyst amount forced reactant gas residence 

times to be longer.  The amount of catalyst used in this study ranged from 2.5-2.9 times 

(186-218mg) the amount used in previous studies (75mg).  A feed gas CH4:CO2:H2O:O2 

ratio of 1:0.7:0.5:0.2 was fed to the reactor.  GHSV were calculated to be approximately 

21000 hr-1and 25000 hr-1 when 218 mg and 186 mg catalyst respectively were used to 

carry out the reforming reaction.  The results of which can be found in Table 6.  It was 

interesting to find that while CH4 conversions remained relatively unchanged, CO2 

conversions were slightly lower and H2:CO ratios were significantly reduced compared to 

the previous studies in which the GHSV~61000hr-1.  This suggests that, as the feed gas 

travels through the catalyst bed, different reaction zones are being formed.  It is proposed 

that as the feed gas initially reacts and creates higher H2 concentration, the reverse WGS 

reaction becomes more favorable further down the catalyst bed. 
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Table 6: GHSV comparison chart at CH4:CO2:H2O:O2 gas feed ratio of ratio of 
1:0.7:0.5:0.2 and reactor temperature of 800°C.

 
 
This could be an of steam reforming reactions (eq. 3, 4) approaching equilibrium.  This 

suggests that there may be an advantage to using higher GHSV to maintain higher H2 

production.  By decreasing residence time, the ability to limit reactions that consume H2 

may be possible.  Understandably, as this process is scaled up or with turbulent gas flows, 

reaction equilibrium may be unavoidable.  However, even at the lower GHSV conditions, 

H2:CO ratios were maintained between 1.55-1.66.  Therefore, if H2 supplementation is 

needed for FT processing of the tri-reformed gas the amount of H2 needed to be added to 

the tri-reforming process will be significantly lower than compared to more traditional 

reforming processes.  These other reforming processes will also be significantly more 

expensive as higher amounts of steam will be needed and/or coking reactions will limit 

catalyst lifetime. 

Through experimentation, it is seen that control over the feed gas composition is 

extremely critical in producing a desired syngas composition with a H2:CO ratio of 2:1.  

It is clear that analytical analysis of the feed gas coming from the gasifier is extremely 

important to determine the degree of supplementation of CH4, O2 and H2O needed to 

reach a CH4:CO2:H2O:O2 ratio of 1:0.7:0.23:0.2.  However, because larger hydrocarbons 
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and tars have a lower H:C ratio, this will impact product H2:CO ratios and further studies 

will be needed to determine how to adjust feed gas supplementation when various 

amounts of these longer chain hydrocarbons are present.  Crude biomass-derived syngas 

typically contains between 0.2-9.5% total tars and therefore a broad range of possible 

feed gas compositions for tri-reforming need to be tested [23].  From the studies 

presented here, it is proposed that lower than previously reported water ratios can be used 

to reach desired H2:CO ratios for FT applications.  Also, by examining how much CO2 is 

present in the crude biomass syngas sent to the reformer, one can significantly reduce the 

total cost by supplementing with CH4 or natural gas instead of a pure H2 stream produced 

from processes utilizing the WGS reaction or other costly processing to produce higher 

H2 content syngas.  The amount of CO2 present determines how to correctly adjust feed 

gas composition ratios since typical crude biomass syngas contain less CH4 than CO2 

(Table 1).  Significant energy, costs, and environmental advantages can be achieved in 

using a tri-reforming process that supplements with a CH4 or natural gas stream and 

reduces the amount total steam needed.  This can be achieved using the Ce/ZrO2-Ni-Mg 

catalyst described here.  Further discussion to prove this is provided later in the text. 

 3.3 Examination of the Catalyst Formulation on Catalyst Performance 

Various catalyst formulations were tested during this research to study the 

consequences of altering the support mixture and the ratios/amounts of metals loaded 

onto the catalyst.  These catalysts were each tested under the same conditions while 

steadily ramping the temperature.  All catalysts were prepared using the same WI 

preparation technique.  Results were compared in Figure 19 showing the H2 production 

from various catalysts tested while steadily ramping the temperature at 10°C/min.  H2 
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production is only shown in Figure 19 for ease of interpretation but CO2 and CH4 

conversions were also analyzed.  The effects of varying the support makeup ratio were 

!
Figure 21: H2 production chart for initial catalytic testing. 

compared by holding the metal wt% and ratios constant.  The lower Ce:Zr ratios of 

0.16:0.84 in the support led to lower H2 production, CH4 conversion, and CO2 

conversion.  When Ce:Zr ratios were increased to 0.8:0.2, the H2 production, CH4 

conversion, and CO2 conversion slightly increased.  Adjusting Ce:Zr ratios to a more 

even ratio of 0.6:0.4 gave the best results with the highest H2 production, CH4 

conversion, and CO2 conversions.  This can be explained by the charge channeling effect 

created by nearby cations.  By incorporating a more even ratio of Ce:Zr, oxygen mobility 

and redox properties are improved allowing transport of oxygen to appropriate sites 

preventing coking on the Ni metal surface.  These results were also reported by Ranga et 

al. who discovered the even Ce:Zr support ratios give the optimum channel size for 
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oxygen mobility [172].  Thermal stability was seen in all mixed oxide support ratios and 

is attributed to ZrO2 high thermal stability.  By incorporating this compound into the 

support, it improves the mixed oxides catalytic activity at the elevated temperatures used 

in reforming reactions.  This is supported by the XRD data showing that the crystallite 

structure and size are unchanged at reduction and reaction conditions (Fig 8, Fig. 9) at 

temperatures of 800°C. 

The impacts of metal loading ratios and wt% on the catalyst were explored by 

holding the support ratio constant and varying the metal loading quantities.  Two 

different Ni amounts of 4% and 8% were loaded onto the same support composition.  In 

all cases, the lower wt% of Ni lead to a plateau effect and a low H2 production was seen.  

The plateauing effect describes the tendency of the production of a certain compound, in 

this case H2, to remain unchanged even when temperature is increased.  This can be 

explained by the occupancy of all active sites.  As the reaction temperature is increased, 

more active sites become occupied by reactants until all active sites are occupied and 

higher conversions can no longer be achieved.  When 8% Ni was loaded onto the 

catalyst, the plateauing effect on H2 production at higher temperatures is no longer seen.  

The amounts and ratios of Mg were also varied to study its effect on catalyst 

performance.  Again, catalysts with the same support composition and metal loading 

technique were compared while varying the metals loaded onto the surface.  The catalyst 

with no Mg loaded onto the surface had the slowest rates of H2 production and quickly 

plateaued even when higher Ni amounts were loaded onto the surface.  This can be 

explained by the deactivation of the catalyst due to coking.  At a Ni:Mg wt% ratio of 2:1, 

H2 production rates were increased and no plateauing of the H2 production was seen with 
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a steady rise in production as temperatures were increased.  Higher amounts of H2 and the 

fastest rate of H2 production were seen when Ni:Mg wt% ratios of 1:1 were loaded onto 

the catalyst surface.  This effect can be explained by the facilitation of the redox 

mechanism involved in methane reforming with increased interface between Ni and Mg.  

Metal wt % ratios approaching unity gave more interfaces between Ni and Mg.  This 

facilitates CO2 adsorption/dissociation and oxygen movement to the reduced Ni surface 

were it could react with the adsorbed carbon from CH4.  Basic promoters like MgO have 

an affinity for CO2 due to its acidic nature [131].  This is an added advantage in CO2 

reforming since CO2 is normally a very stable molecule and a catalytic reaction is needed 

for quick dissociation.  XAFS data given in Figure 14 supports this explanation showing 

that increased Ni-Mg interactions were found in the sample with a Ni:Mg ratio of 1.  

Further support for advantages using Ni:Mg ratios approaching 1 is given in section 3.4. 

TPO studies of catalyst reacted with feed gas CH4:CO2:H2O:O2 ratios of 

1:0.7:0.23-0.5:0.2 and even ratios of Ni:Mg show very little amounts of coke formation 

(Table 4).  This is attributed to the self-cleaning capabilities of the catalyst.  These de-

coking mechanisms are attributed to the desirable OSC and redox properties associated 

with the mixed (Ce,Zr)O2 support and basic promoter (MgO) present in this Ni tri-

reforming catalyst.  Similar results of negligible deactivation due to coke formation have 

been reported for Mg promoted catalyst [22].  This further proves that the mixed oxide 

support and MgO promoter play a critical role in extending catalyst lifetime and 

promoting CO2 conversions in Ni reforming catalyst. 
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 3.4 Examination of the Preparation Technique on Catalyst Performance 

In an attempt to compare different metal loading methods, catalysts prepared by 

WI and DP were examined under the same tri-reforming conditions. Table 7 shows the 

total % carbon species in the feed gas that ended up as coke on the catalyst surface.  

These amounts were measured by TPO immediately following each reaction after rapid 

cooling.  Unfortunately, a direct comparison between these two catalyst preparation 

Table 7: Catalyst preparation method coke comparison chart.

 
 
techniques is unable to be made.  It was found through characterization that those catalyst 

prepared by deposition precipitation resulted in less MgO loaded onto the surface.  

Therefore, the results shown here are more indicative of the influence higher MgO 

loadings have on catalyst performance.  WI catalysts consistently had a higher resistance 

to coke formation in every case where support mixture, Ni loading, and reacting 

conditions were held constant.  This trend becomes more dramatic as higher 

concentrations of carbon containing species where supplied to the reaction feed gas and 

in some cases forced the reaction to be aborted due to coking on the DP prepared catalyst.  

XRD data of the pre- and post-reaction WI samples show a definitive peak for the 

reduced Ni species.  The presence of the reduced Ni species in the post reaction sample 

shows that deactivation, due to unreduced (Ni,Mg)O species, was limited and Ni species 

remained in the reduced form after a time on stream of 4hr for WI catalyst.  
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4. Solar Application (proof of concept) 

4.1 Solar Introduction 

 Solar power is seen as a very promising sustainable energy source.  However, the 

storage of the sun’s energy for long periods of time is a large hurdle to overcome in order 

to make this the solution to our world’s energy crisis.  To overcome this problem, it is 

proposed here to combine biomass gasification (BTL) processes with solar power to 

create hydrocarbon fuels via FT synthesis.  It is the goal of this section to prove the 

concept of this idea and create a preliminary reactor design for this process.  In doing so, 

this provides a means to store the suns energy for long periods of time in the form of 

liquid fuel for future use. 

 The use of a solar concentrator and an appropriate heating media will be 

implemented to transfer heat to a set of reaction vessels.  The location of the power plant 

is designed for Phoenix, AZ and will be next to a municipal solid waste (MSW) landfill 

where methane gas is being produced via biodegradation.  The reason for this is that 

around 71% of the MSW can be used as a biomass feedstock to the gasifier and a supply 

of methane to run the reactors can be supplied during the night-time or when sunshine is 

unavailable.  This allows for 24/7 operations.  When sunshine is unavailable, the heating 

media will be heated using methane or natural gas in order to reach the desired 

temperatures needed to run the reactors.  In doing so, it will cut down on start up time 

when the sun is available by keeping the media at the desired temperature.  This media 

will be used to directly/indirectly heat a gasifier (1000°C), reformer (750-900°C), and FT 
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(250-350°C) reactor.  The media will directly heat to the reforming reactor first and the 

energy provided from the exit stream of the reformer and FT reactor will provide 

sufficient energy heat the gasifier indirectly.  Steam will also be generated in the process 

to deliver to the gasifier, reformer, and possibly a turbine by using the extra heat from the 

reformer product gas and FT reaction. The product will be a clean, sustainable liquid fuel 

for military and civilian applications.   

4.2 Reactor Scheme 

4.2.1 Fischer Tropsch Synthesis 

 The goal for this proof of concept project is to design a 4,000 barrel JP8/day 

facility.  The Fischer Tropsch synthesis will produce liquid hydrocarbon fuel using a 

syngas feed composition of H2:CO=1.7-2.15.   Reaction products and their reaction 

equations are listed in eq. 5, 30-32. 

(5) Methanation !" ! !!! ! !!! ! !!!  

(30) Paraffins !"# ! !!! ! !!!! ! !!!!!!! ! !!!! 

(31) Olefins  !"# ! !!!! ! !!!!! ! !!!! 

(32) Alcohols !"# ! !!!! ! !!!!!!!!" ! !! ! !!!!! 

For simplicity, we will only consider making undecane (C11) since this is the 

average carbon chain length in JP-8 fuels.  Fischer Tropsch reactions are known to be 

highly exothermic and according to eq. 30 the heat produced will be 164.9 kJ/mol CO.  

Considering the average carbon number in the product fuel is 11, then 1.8 MJ/mol C11 

will be produced.  The MW of C11 paraffin is 156.31g/mol and the average density of 

JP8 is 0.8kg/L, therefore the following calculation can be made: 
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!!"""!!!"!!"!
!"# ! !"#!! !!" !

!!!!!"
! !! !"""!! !!" !!!"# !"#!!"!!

! !!!"!!!!"#!!"!
!"#! 

!!!!"
!"#!!"! ! !!!"!!!!"#!!"!

!"# ! !!!"#!!!!"
!"# !!"!!!!!"!!" 

The 66.96 MW of heat produced from the FT reactions can be used to create steam to run 

a turbine or heat the feed gases flowing to the gasifier and reforming reactions.  The later 

is explained further in the text.  Since the heat of vaporization of steam is 40.56 kJ/mol 

and the specific heat of water is 4.190 J/kg-K, it is possible to calculate for the production 

of steam from 30°C water we would need around 2.26 MJ/m3
 liquid water.  If you are 

using the steam to run a turbine, then electricity could be produced to run pumps, drives, 

controls, etc.  Considering a steam turbine efficiency of 40% you could produce around 

26.78 MW electricity from the excess heat generated by the FT reaction.  This is a very 

nice contribution to the overall process and lowers production cost. 

 Using cobalt as the FT catalyst, 200°C is the typical operating temperature for this 

type of FT reaction.  Reaching these temperatures will be no problem as the exit gas from 

the reformer will be ~800°C.  Another opportunity to create more steam can be taken 

advantage of in the cooling of these gases from the reformer.  It may also be a good 

opportunity to provide heat to the gasifier through another heating media (air, steam, O2).  

Therefore, no heat needs to be provided directly by solar or natural gas to run the FT 

reactor.  Instead, the FT reactor produces heat that can generate 26.78 MW to help in the 

overall process.  The reforming and gasification reactions, on the other hand, are very 

energy intensive. 
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4.2.2 Reforming 

 To provide the ratio of H2:CO needed in the FT synthesis, the crude syngas 

produced in the biomass gasifier needs to be reformed.  A reforming reactor temperature 

of ~800°C will be needed in this process.  Calculations based on my research suggest that 

14,418 mol/min of CH4 will need to be reacted for a 4,000 barrel/day facility.  This is a 

rough calculation based upon the amount of CH4 and CO2 consumed to produce enough 

moles carbon to synthesize C11 paraffins at 100% efficiency.  Energy needed for this 

idealized process is 2.60E6 kJ/min (1.56E5MJ/hr) or 43,333 kJ/s or 43.33 MW.  These 

calculations have been made below and are based upon my research and eq. 9, 10, 13, 

and 14. 

(9)  !!! ! !"! ! !" ! !!!   !"! ! !"#!! !" !"# 

(10) !!! ! !!! ! !" ! !!!   !"! ! !"#!! !" !"! 

(13) !!! ! ! !!! ! !" ! !!!   !"! ! !!"!! !" !"# 

(14) !!! ! !!! ! !!! ! !!!!   !"! ! !!!" !" !"# 

26.1% of methane is converted by steam reforminga 

 !!!"#!!"#!! !" !"# ! !"!!" !" !"# 

53.9% of methane is converted by CO2 reforminga 

 !!!"#!!"#!! !" !"# ! !""!! !" !"# 

20% of methane is converted by POMa 

 !!!"! !!"!! !" !"# ! !!!!" !" !"# 

!"#$% ! !"#!!" !" !"#!!!!
b 
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a The percentage of CH4 converted by each reforming mechanism was calculated based upon the complete 

consumption of O2, 77% conversion of CO2, and the remaining balance due to steam reforming. 

b Song and Pan report 217.3KJ/mol CH4 needed [131].!

!!!"!!!!"#!!"!
!"# ! !!!!"#!!! !"#!!!!

! !"!!"!!!!"#!!!!"#$%&#&#'!!"#$
!"#

! !"#!$!!"#!!!!"#$%&#&#'!!"#$
!"# 

!"#$%!!"!!!!"#$%&#&#'!!"#$%#!! !!!!!!! ! !! !!!  

! !"!!"!!"#!!!!"!!!! 

! !"!!"!!"#!!!!"!!!! 

!!!"" ! !"#!$!!"#!!!!"#$%&#&#'!!"#$
!"# ! !""!#!!"#!!!! !"# 

!""!#!!"#!!!! !"# ! !"#!!"!!"
!"#!!!! ! !!!"!!!!"

!"# !"!
!""""!!! !"# 

!"""!" ! ! !"""!
!!" ! !!

! ! !
! !"!!!!!!!!!!"!!"!!!" 

During the day, the use of solar power will be employed along with a hybrid type system.  

This hybrid system would incorporate the use of the methane or syngas produced in 

biodegradation and gasification respectively to heat the system during cloud cover or 

night hours.  Steam turbines could also be used to provide heat when sunshine is 

unavailable.  The reformer reactor will consist of a bank of tubes containing the molten 

salt that will transfer heat to a fixed bed of catalyst (Ce:Zr 8% Ni+Mg) where the crude 

syngas from biomass gasification will be fed through.  In this way, the molten salt can 

transfer heat to the catalyst bed in a more uniform manner using the catalyst to aid in heat 

transfer directly to the gas.  The product syngas will be free of tar and contaminants that 
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would otherwise deactivate the cobalt FT catalyst and also contain the desired H2:CO 

ratio of 2:1 needed for FT synthesis. 

4.2.3 Gasification 

 The gasifier also requires a heat input considering the main reactions (eq. 9-15).  

For this process, around 2,740 ton/day of biomass will be fed to an indirectly heated 

gasification technology.  This involves the use of hot solid particles (sand) fluidized with 

steam.  The char and sand are separated from the syngas via a cyclone and transported to 

a second fluidized bed reactor.  The second reactor is O2/H2O blown and acts as a char 

combustor, generating hot gases and particles (sand).  The hot sand is then separated from 

the hot gases and recirculated to the gasifier to provide heat for pyrolysis [31].  The 

heating value of this gas is ~15MJ/m3 and could be used to provide heat when sunshine is 

unavailable.  The O2/H2O provided to the second part (exothermic zone) of this reactor 

will be preheated by the exit gas from the reformer or heat produced from FT reaction.  

Exit gas from the gasifier will approach ~1000°C and can be used to regulate the 

temperature of the molten salt coming from the receiver to stabilize the temperature at the 

desired inlet reaction temp~ 900°C.  Therefore, the reforming step is the only reactor 

directly heated by solar power in this process while the other reactors are indirectly 

heated by the solar power. 

4.3 Plant Design 

 A central tower solar receiver was chosen for this proof of concept.  Therefore 

monthly insolation/day values most be calculated to design the power plant.  Using the 

Collares-Pareira and Rabl equation (eq. 33) for two-axis tracking and the monthly 

averaged insolation per day in Phoenix, Az, the monthly averaged insolation per day on a 
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collector surface in Phoenix, Az was calculated [175].  These values are given in Table 8.  

See Appendices A for full list of calculated solar values for Phoenix, AZ. 

(33) !! ! !! ! !! !! !! !! 

Table 8: Monthly averaged insolation per day on a collector surface in Phoenix, AZ.

 
 
The Hc (monthly averaged insolation per day on a collector surface) design value chosen 

is 19107kJ/m2-day and occurs 17% of the time.  This design value was chosen in order to 

reduce cost and prevent overheating of the heat media.  In times of less insolation (values 

lower than 19107kJ/m2-day) during the year, the auxiliary power system will be used.  

This auxiliary power system will operate from either the natural gas being collected from 

the nearby landfill through biodegradation, the steam turbine if chosen to incorporate into 

plant, or the syngas being produced in the process. 

Due to the extreme temperatures needed for the reforming reaction, it is difficult 

to decide on the most appropriate type of salt to be used as the heating media.  A cavity 

type receiver was chosen to reduce heat loss through convection and conduction and 

needs a fluid media.  Therefore, the heating media (molten salt) chosen needs to be in a 
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liquid state to provide flow through the bank of tubes in the receiver and reactor.  Table 9 

lists possible salts that could be applicable and Table 10 lists the cost associated with 

some of these salts [176, 177]. 

Table 9: Salt properties.

  
 
Table 10: Salt prices.

 
 
Li2CO3 was decided upon because of its reasonable melting point (726°C) occurring 

below the operating minimum temperature of 750°C and because of its higher energy 
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density of 1.47kWh/m3-K.  Other possible salts that take advantage of the latent heat may 

be possible.  Another option is the use of extremely hot air as the heating media.  

 In section 4.2.2, it was calculated that 43.3 MW or 1.56E8 kJ/hr needed to be 

generated to successfully run the reforming reaction.  To determine the amount of salt 

needed to run the reactor at the desired temperature range (750-900°C), the following 

calculations have been made: 

 ! ! !!!!!!!!"#$%&' ! !"#$%&'()*!!"#$!!"#$ ! !"#$!!"#"!$%&!!"#!!!!!! !

!""! !"#$! ! !!!"!!!!!"
!! 

!"#$%&'()*!!"#$!!"#$

! !!!"!!!!"
!! ! !"""!

!!"

! !"#$!"
!! ! !"#!!!!!

!" ! ! ! !"#$!

! !"#!!!!
!! !"! !!!"!

!
!"# 

A flow rate of 720.5 m3/min of inlet gas (CH4:CO2:H2O:O2=1:0.7:0.3:0.2) to the reformer 

will be needed, based on 22.4L/mol gas and 14418 mol CH4/min needed to react for 

4,000 barrel/day production.  Using a GHSV of 61000 hr-1, this would equate to a catalyst 

bed volume of 1001m3.  Although scale up to this size is not a trivial feat, it is not 

impossible.  Boger reports that “commercial applications and stationary environmental 

application have been successfully employed in reactors ranging from several cubic 

meters up to 1000 m3 bed volumes [178]. 

For this process, a bank of tubes will be placed inside the cavity receiver and 

absorb the solar energy.  Thin walled stainless steel or Incoloy 800 tubes, painted with 

black pyromark paint to optimize absorbance with minimal heat loss, will be used inside 
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the receiver.  These materials have a high resistance to corrosion but other materials may 

have to be looked at considering the high temperatures involved in this process.  The 

tubes will be placed along a serpentine path inside the cavity receiver and then flow to a 

400m3 thermal storage tank allowing 2hr of thermal storage.  The molten salt will then be 

pumped to a bank of tubes inside the reformer reactor to provide the heat for reaction.  

The lower temperature salt (750°C) will then be pumped from the reactor either directly 

to the cavity receiver or to a heated zone where it can be reheated to the appropriate 

900°C.  This second heated zone allows heating of the salt by other means (methane, 

electricity, syngas), which can then bypass the receiver when sunlight is unavailable.  

Based upon the receiver and auxiliary heated zone containing~5m3 molten salt each, the 

reactor containing~100m3, the thermal storage container ~400 m3 molten salt, and molten 

salt flowing through the piping system~5m3; a total of ~514m3 of salt would be adequate 

for this process.  The sizing of the catalyst bed was based upon similar GHSV used in my 

laboratory experiments.  Scaling up from lab to commercial is unpracticed in the field 

and is usually done in orders of magnitude.  Therefore, the rough estimations done to size 

this reactor system are susceptible to large error.  Based upon the prices of salts listed in 

Table 10 the cost of the LiCO3 salt needed would be around $2.23 million. 

!"#!! ! !"#$!!"!!"#!! !! ! !"!!" !" ! !"!!"!!"##"$% 

Heliostats with an area of 150m2 will be used to provide heat at a theoretical 90% 

efficiency.  These larger area heliostats may prove to be better than their smaller 

counterparts due to the reduction in the number of drive system and mechanical parts 

needed.  This may help reduce the likelihood of mechanical failure.  Based upon the 

design value chosen for Hc and the heliostats area, the total radiation each heliostat 



www.manaraa.com

! 76 

receives is 2866.1MJ/day or 119.4MJ/hr.  Therefore, at a 90% efficiency, 107.5MJ/hr can 

be generated for each heliostat.  Based upon the energy needed for the reforming reaction 

of 1.56E5 MJ/hr a total of 1452 heliostats will be needed in this power plant design.  

Therefore the total heliostat area will be 220500 m2.  Due to shading issues in the 

heliostat field, it was determined that the mirrors should occupy 40-50% of total land 

area.  Based upon 50% land coverage by mirrors, the total land area needed will be 

441000 m2.  Table 11 gives heliostat prices at an estimated production of 50,000units/yr 

facility [6]. 

Table 11: Heliostat costs. 

 

These prices are lower than current heliostat prices but will be used because of the 

possibility that these prices can be reached if a company chooses to increase the 

production line on heliostats.  From the values listed in Table 11, the total cost for the 

heliostats is $27.9 million.  The heliostats will focus on a 325m2 surface area inside the 

central receiver cavity and thus the CR (concentration) is equal to (220500m2)/(325m2)= 

678. 
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4.4 Economics 

The estimated cost of this central receiver power plant is based upon [179, 180] and are 

listed in Table 12. 

Table 12: Estimated plant cost. 

 
 
At the estimated $44/ton to bury landfill waste, the conversion of this waste to energy 

would actually save the landfill around $44 million/year if the plant were operated year 

round.  This is a significant savings for MSW facilities alone.  Factoring in that 4,000 

barrel/day of JP-8 will be produced and at a selling price of $3.5/gallon, the plant can 

generate around $215 million/yr if the plant is operated year round.  Thus, from the 

savings by the MSW facility and the profit from selling the JP8 fuel, the company can 

bring in $255 million/yr.  The capital needed to build the power plant is estimated at $887 

million.  Therefore, the possibility of paying off the capital and producing a profit within 

4 years is promising.  If the plant has a downtime of 1 month out of the year, the plant 
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would lose around $18 million in fuel sales and still be looking to pay off the capital cost 

within 4 years.  These estimates are based upon no outside electricity while sunlight is 

unavailable and energy would be provided by methane from biodegradation and crude 

syngas from biodegradation.  Because of the complexity of this plant design, there may 

be factors that have been overlooked, along with errors in cost estimates that could make 

this a less profitable process.  But from the data presented here, this plant stands to make 

a substantial contribution to sustainable alternative energy solutions. 

4.5 Solar Conclusion 

 This central receiver power plant attempts to collect solar energy and store the 

energy for long-term periods in a stable liquid form as hydrocarbon fuel.  Jet fuel (JP-8) 

was chosen as the desired end product due to the large consumption rates in the US and 

the military’s need to provide alternative fuels to its fleets.  The Air Force and Navy have 

both expressed goals to reduce their petroleum consumption.  The design of this plant in 

close proximity to a landfill also creates a waste to energy process that can take a 

negative value feedstock (MSW) and convert it into a high value liquid fuel.  This 

process is designed to be totally sustainable and is a proof of concept.  Further research 

and development will be needed to make this plant feasible but the concepts presented 

here prove the possibility of designing such a process in the near future. 
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5. Conclusion 

 The support Ce:Zr ratio, metal loading techniques, metal wt %, and Ni Mg ratios 

all had a pronounced influence on the catalyst performance.  Even ratios of metal oxides 

making up the support and even ratios of Ni:Mg gave the best performance.  The wet 

impregnation method consistently showed more resistance to coke formation when 

compared to the deposition precipitation method but was later attributed to higher Mg 

loadings.  Lower than previously reported H2O concentrations in the feed gas 

composition also led to desired H2:CO ratios needed for FT reaction while maintaining 

high conversions of CO2 and resistance to coke formation.  Reactions involving tar 

reforming indicate that biomass derived crude syngas containing less than 6.7% total tars 

can effectively be tri-reformed resulting in a desired syngas for FT applications.  Higher 

GHSV around 61000 hr-1 gave significantly higher H2:CO ratios when compared to 

reactions run at lower GHSV around 25000 hr-1.  These results suggest that steam 

reforming reactions are kept further from equilibrium at higher GHSV and result in 

higher than expected H2 production at lower steam ratios.  Moreover, in gasification of 

biomass, CH4 and H2O supplementation of the product gas, prior to reforming, may be 

needed to produce desired H2:CO ratios for FT applications.  The amounts of which can 

be determined based upon CO2:CH4 ratios in the crude syngas from the biomass 

gasification process.  Further experiments are needed to determine how the amount of 

tars present in the feed gas will influence the degree of CH4 and H2O supplementation 

needed for tri-reforming.  The proof of concept design of a solar powered GTL plant 
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using MSW as a feedstock shows a realistic opportunity for long term storage of the 

sun’s energy in the form of liquid fuels without outside energy sources (electricity from 

the grid).  Tri-reforming with the above tested catalyst and reaction conditions offers the 

advantage of producing desired H2/CO ratios with minimal deactivation, high reactant 

conversions, and extended catalyst lifetime.  
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